一种基于深度学习的云服务性能自适应动作类型选择方法

    公开(公告)号:CN104951425B

    公开(公告)日:2018-03-13

    申请号:CN201510426784.9

    申请日:2015-07-20

    Applicant: 东北大学

    Abstract: 本发明提供一种基于深度学习的云服务性能自适应动作类型选择方法,包括监测物理机群数据、虚拟机数据、服务组件数据;结合SLA中约定的约束事件和实时监测的数据,判定当前服务性能是否需要优化:若当前数据触发约束事件,则根据自适应方法库决策自适应动作类型,否则继续监测;根据决策的自适应动作类型进行云服务性能自优化;反馈学习,更新自适应方法库,返回继续监测。云环境自身具有高可伸缩、动态重构的特性,致使云服务的服务性能在实际运行环境中受到多因素的制约,本发明方法在服务组件进行服务性能自优化时,根据不同场景的实际情况从自适应动作集中选择出最佳的自适应动作。

    一种基于深度学习的云服务性能自适应动作类型选择方法

    公开(公告)号:CN104951425A

    公开(公告)日:2015-09-30

    申请号:CN201510426784.9

    申请日:2015-07-20

    Applicant: 东北大学

    Abstract: 本发明提供一种基于深度学习的云服务性能自适应动作类型选择方法,包括监测物理机群数据、虚拟机数据、服务组件数据;结合SLA中约定的约束事件和实时监测的数据,判定当前服务性能是否需要优化:若当前数据触发约束事件,则根据自适应方法库决策自适应动作类型,否则继续监测;根据决策的自适应动作类型进行云服务性能自优化;反馈学习,更新自适应方法库,返回继续监测。云环境自身具有高可伸缩、动态重构的特性,致使云服务的服务性能在实际运行环境中受到多因素的制约,本发明方法在服务组件进行服务性能自优化时,根据不同场景的实际情况从自适应动作集中选择出最佳的自适应动作。

Patent Agency Ranking