-
公开(公告)号:CN109670528A
公开(公告)日:2019-04-23
申请号:CN201811352790.4
申请日:2018-11-14
Applicant: 中国矿业大学
Abstract: 本发明公开了一种面向行人重识别任务的基于成对样本随机遮挡策略的数据扩充方法,在训练阶段,首先通过采用基于成对样本随机遮挡策略的数据扩充方法增加样本的多样性,提高深度行人重模型训练过程中的鲁棒性,进而提高模型的泛化性能。本发明与现有技术中数据扩充的方法相比,利用了孪生深度学习模型训练数据的特点,同时考虑了孪生网络训练的困难,提出了一种新的数据扩充方法。通过增加训练数据对的多样性,有效缓解单个行人数据集类别少且缺乏多样性问题给带来的影响,提升了模型的泛化性能,让行人重识别方法可以更好的处理复杂环境下的相行人重识别问题。
-
公开(公告)号:CN109670528B
公开(公告)日:2023-04-18
申请号:CN201811352790.4
申请日:2018-11-14
Applicant: 中国矿业大学
IPC: G06V10/774 , G06V10/82 , G06V10/764 , G06V40/10 , G06N3/0464 , G06N3/096
Abstract: 本发明公开了一种面向行人重识别任务的基于成对样本随机遮挡策略的数据扩充方法,在训练阶段,首先通过采用基于成对样本随机遮挡策略的数据扩充方法增加样本的多样性,提高深度行人重模型训练过程中的鲁棒性,进而提高模型的泛化性能。本发明与现有技术中数据扩充的方法相比,利用了孪生深度学习模型训练数据的特点,同时考虑了孪生网络训练的困难,提出了一种新的数据扩充方法。通过增加训练数据对的多样性,有效缓解单个行人数据集类别少且缺乏多样性问题给带来的影响,提升了模型的泛化性能,让行人重识别方法可以更好的处理复杂环境下的相行人重识别问题。
-