相变存储器单元器件的制备方法

    公开(公告)号:CN100508235C

    公开(公告)日:2009-07-01

    申请号:CN200410015743.2

    申请日:2004-01-09

    Abstract: 本发明涉及一种相变存储器单元器件的制备方法,属于微电子技术领域。其特征在于,首先在衬底材料上沉积底电极材料,再沉积电介质材料,然后通过机械方法,用三棱锥,圆锥等多种形状和钻石,金刚石等不同材料的压头在薄膜上打出小孔,使小孔穿透电介质层,尖头部和底电极材料接触。接着,沉积薄薄一层相变材料,表面抛光。接着使用剥离技术,即涂上光刻胶,曝光显影使小孔露出来,然后沉积上电极材料,去胶制成。优点在于相变材料和底电极接触面很小,可达几百纳米,所以很小的电流就可以产生很大的热量,使相变材料在很短时间内就可发生相变。用本发明制备的器件具有较小的功耗,很短的响应时间,对于器件的性能有很大的提高。

    纳电子器件性能测试用的器件结构及制备方法

    公开(公告)号:CN1314974C

    公开(公告)日:2007-05-09

    申请号:CN200410053566.7

    申请日:2004-08-06

    Abstract: 本发明涉及一种纳电子器件性能测试用的器件结构及制备方法。它是在硅衬底材料上先沉积底电极材料,然后沉积电介质材料,曝光,刻蚀成多孔状,孔径在50-200nm,间距2-5μm,接着向孔内沉积相变材料,化学机械抛光,覆盖掩膜板,沉积上电极。于是薄膜就被掩膜板分成很多小单元,而每个单元大小差不多,引线,简单封装,每个单元内的小器件处于并联状态,然后测试每个单元的性能。此外,可以通过改变掩模板的大小,把上电极做成各种尺寸,画出一次函数关系,通过外延法得出截距,从而得到纳米器件的本征性能。本发明解决了纳米器件测量引线难的问题。由于这些小器件是并联的,不会增加工作电压,准确的反映出器件本身的性能。

    纳电子器件性能测试用的器件结构及制备方法

    公开(公告)号:CN1588106A

    公开(公告)日:2005-03-02

    申请号:CN200410053566.7

    申请日:2004-08-06

    Abstract: 本发明涉及一种纳电子器件性能测试用的器件结构及制备方法。它是在硅衬底材料上先沉积底电极材料,然后沉积电介质材料,曝光,刻蚀成多孔状,孔径在50-200nm,间距2-5μm,接着向孔内沉积相变材料,化学机械抛光,覆盖掩膜板,沉积上电极。于是薄膜就被掩膜板分成很多小单元,而每个单元大小差不多,引线,简单封装,每个单元内的小器件处于并联状态,然后测试每个单元的性能。此外,可以通过改变掩模板的大小,把上电极做成各种尺寸,画出一次函数关系,通过外延法得出截距,从而得到纳米器件的本征性能。本发明解决了纳米器件测量引线难的问题。由于这些小器件是并联的,不会增加工作电压,准确的反映出器件本身的性能。

    最小尺寸为纳米量级图形的印刻法制备工艺

    公开(公告)号:CN1554987A

    公开(公告)日:2004-12-15

    申请号:CN200310122870.8

    申请日:2003-12-26

    Abstract: 本发明涉及一种制备最小尺寸可达纳米量级的图形的印刻法制备工艺,属于微电子领域。其特征在于先制备出“印”,“印”上刻有所需的凸起或凹进的图形。接着利用得到的印压在较为柔软的材料上,印上突起的部分就在该材料上印刻出了所需的图形。如印凹进则相反。目前微电子工业中制备纳米图形主要采用Spacer技术。Spacer技术的工艺比较复杂,需要经过很多流程而且不易控制;而电子束曝光成本较高,不适合于大批量生产。而本发明提出的印刻方法成本低廉,只要制备出一个印,就能印刻出相同条件的很多样品,有很高的可重复性。

    最小尺寸为纳米量级图形的印刻方法

    公开(公告)号:CN100373259C

    公开(公告)日:2008-03-05

    申请号:CN200310122870.8

    申请日:2003-12-26

    Abstract: 本发明涉及一种制备最小尺寸可达纳米量级图形的印刻方法,属于微电子领域。其特征在于先制备出“印”,“印”上刻有所需的凸起或凹进的图形。接着利用得到的印压在较为柔软的材料上,印上突起的部分就在该材料上印刻出了所需的图形。如印凹进则相反。目前微电子工业中制备纳米图形主要采用Spacer技术。Spacer技术的工艺比较复杂,需要经过很多流程而且不易控制;而电子束曝光成本较高,不适合于大批量生产。而本发明提出的印刻方法成本低廉,只要制备出一个印,就能印刻出相同条件的很多样品,有很高的可重复性。

    相变存储器中纳米量级单元器件的制备方法

    公开(公告)号:CN100356606C

    公开(公告)日:2007-12-19

    申请号:CN200310109372.X

    申请日:2003-12-12

    Abstract: 本发明涉及相变存储器中纳米量级单元器件的制备方法,属于微电子领域。本方法特征在于先在基底上制备10-400nm的过渡层和50-400nm的下电极;接着利用网眼孔径为10-500um的掩膜连续溅射约为10-1000nm的合金层以及20-400nm的上电极,得到了众多柱体。然后针对合金层进行腐蚀,由于该腐蚀液对上下电极和合金腐蚀速度的不同,上下电极将基本不被腐蚀;腐蚀后合金层呈现出为两头粗中间细的形状。这种中间细的结构有利于相变合金材料的相变,正是相变存储器研发设计中所要求的。最后,在上述样品上沉积填充物,在柱体中段凹进去的地方形成了间隙,间隙在此起到绝热和抑制合金层相变时膨胀的作用。相变合金层不一定是柱状,可以为其他形状。

    一种纳电子相变存储器的制备方法

    公开(公告)号:CN1300839C

    公开(公告)日:2007-02-14

    申请号:CN200410053565.2

    申请日:2004-08-06

    Abstract: 本发明涉及一种纳电子器件的制备方法。特征在于:首先在衬底材料上沉积一层下电极材料W,然后依次沉积一层Al和一层SiO2。通过曝光、刻蚀,在SiO2上刻蚀出孔,使下层Al暴露出来,然后通过阳极氧化法在暴露出的部分形成多孔氧化铝,同时对每个孔进行进一步的加工,可以形成唯一的一个纳米尺度的氧化铝小孔,或形成孔径一致,分布均匀纳米孔阵列,或形成孔径分散而分布均匀纳米孔阵列。再用等离子体增强化学气相沉积法(PECVD)沉积薄膜,实现纳米孔的W填充,通过纳米抛光技术实现纳米孔顶端的平坦化,然后沉积相变材料与电极材料,引线,封装,实现纳米存储单元。

    一种纳电子相变存储器的制备方法

    公开(公告)号:CN1588637A

    公开(公告)日:2005-03-02

    申请号:CN200410053565.2

    申请日:2004-08-06

    Abstract: 本发明涉及一种纳电子器件的制备方法。特征在于:首先在衬底材料上沉积一层下电极材料W,然后依次沉积一层Al和一层SiO2。通过曝光、刻蚀,在SiO2上刻蚀出孔,使下层Al暴露出来,然后通过阳极氧化法在暴露出的部分形成多孔氧化铝,同时对每个孔进行进一步的加工,可以形成唯一的一个纳米尺度的氧化铝小孔,或形成孔径一致,分布均匀纳米孔阵列,或形成孔径分散而分布均匀纳米孔阵列。再用等离子体增强化学气相沉积法(PECVD)沉积薄膜,实现纳米孔的W填充,通过纳米抛光技术实现纳米孔顶端的平坦化,然后沉积相变材料与电极材料,引线,封装,实现纳米存储单元。

    一种减小相变存储器写入电流的单元结构的改进及方法

    公开(公告)号:CN1564337A

    公开(公告)日:2005-01-12

    申请号:CN200410017747.4

    申请日:2004-04-16

    Abstract: 本发明涉及一种减小相变存储器工作电流的单元结构上的改进及其实现方法,属于微电子领域。其特征在于:在加热电极与硫系化合物之间加入一层过渡层,过渡层厚度为10nm-50nm。过渡层材料要求是电阻率比加热电极高,且熔点高于硫系化合物。可选择的有Pt,Ti,TiN等。其结构的改进的实现是采用溅射方法沉积底电极,在沉积一层电介质层,通过曝光刻蚀方法刻蚀小孔,依次沉积加热电极和过渡层,再在其上沉积电介质层,刻蚀较大孔,在孔中沉积硫系化合物,经化学机械抛光后再沉积上电极。经由结构上的改进并实施,由于过渡层材料电阻率高,发热效率就高,用较小的电流就可以达到所需温度。

    一种减小相变存储器写入电流的单元结构及改进方法

    公开(公告)号:CN100397675C

    公开(公告)日:2008-06-25

    申请号:CN200410017747.4

    申请日:2004-04-16

    Abstract: 本发明涉及一种减小相变存储器工作电流的单元结构及改进方法,属于微电子领域。其特征在于:在加热电极与硫系化合物之间加入一层过渡层,过度层厚度为10nm-50nm。过渡层材料要求是电阻率比加热电极高,且熔点高于硫系化合物。可选择的有Pt、Ti、TiN等。其结构的改进的实现是采用溅射方法沉积底电极,在沉积一层电介质层,通过曝光刻蚀方法刻蚀小孔,依次沉积加热电极和过渡层,再在其上沉积电介质层,刻蚀较大孔,在孔中沉积硫系化合物,经化学机械抛光后再沉积上电极。经由结构上的改进并实施,由于过渡层材料电阻率高,发热效率就高,用较小的电流就可以达到所需要的温度。

Patent Agency Ranking