基于多目视觉的空间舱球形监测系统

    公开(公告)号:CN115250331B

    公开(公告)日:2024-08-02

    申请号:CN202210877549.3

    申请日:2022-07-25

    Abstract: 基于多目视觉的空间舱球形监测系统,属于空间监测技术领域,本发明为解决现有空间站舱内环境监测系统存在监测死角、监测机器人在采集图像时需要调整自身位姿的问题。它包括:空间舱球形监测系统在空间站舱内运动,推进模块提供空间舱球形监测系统运动的推进力,姿态传感器在空间舱球形监测系统的运动过程中实时监测空间舱球形监测系统的位姿,综控计算机根据姿态传感器监测的位姿数据控制推进模块进行位姿调整;多目视觉模块、综控计算机、姿态传感器和推进模块安装在结构支架上,多目视觉模块对空间站舱内环境进行图像采集,并对采集的图像进行拼接融合,获得空间站舱内全景图像。本发明用于对空间站舱内环境进行监测。

    基于多目视觉的空间舱球形监测系统

    公开(公告)号:CN115250331A

    公开(公告)日:2022-10-28

    申请号:CN202210877549.3

    申请日:2022-07-25

    Abstract: 基于多目视觉的空间舱球形监测系统,属于空间监测技术领域,本发明为解决现有空间站舱内环境监测系统存在监测死角、监测机器人在采集图像时需要调整自身位姿的问题。它包括:空间舱球形监测系统在空间站舱内运动,推进模块提供空间舱球形监测系统运动的推进力,姿态传感器在空间舱球形监测系统的运动过程中实时监测空间舱球形监测系统的位姿,综控计算机根据姿态传感器监测的位姿数据控制推进模块进行位姿调整;多目视觉模块、综控计算机、姿态传感器和推进模块安装在结构支架上,多目视觉模块对空间站舱内环境进行图像采集,并对采集的图像进行拼接融合,获得空间站舱内全景图像。本发明用于对空间站舱内环境进行监测。

    应用于空间站的基于多目视觉的光学监测系统

    公开(公告)号:CN115265494A

    公开(公告)日:2022-11-01

    申请号:CN202210879801.4

    申请日:2022-07-25

    Abstract: 应用于空间站的基于多目视觉的光学监测系统,属于空间监测领域。解决了现有空间站中的监测机器人在监测空间舱时,监测不同方位需要调整到不同的姿态,姿态调整消耗能源,造成能源浪费及降低监测效率的问题。本发明多目视觉单元用于采集不同视角下的多张图像,并将采集的多张图像同步送至图像处理器对多张图像进行预处理,并对预处理后的图像进行拼接,获得空间站舱内的全景图像;多目视觉单元包括多个环视相机和两个前后视相机,且两个前后视相机分别设置在结构基体的上、下底面上,多个环视相机位于同一个平面内、且均匀设置在结构基体的周向。本发明主要监测空间站的舱内全景图像。

    一种高超声速巡航导弹的弧形柔性支撑托架

    公开(公告)号:CN112945030B

    公开(公告)日:2024-04-05

    申请号:CN202110127793.3

    申请日:2021-01-29

    Abstract: 一种高超声速巡航导弹的弧形柔性支撑托架,涉及一种导弹的支撑结构,解决了现有非规则外形和脆性防热结构的高超声速巡航导弹的支撑结构柔性差的问题。本发明包括可充气气囊、充气阀门和刚性托架;所述可充气气囊为橡胶材料的中空囊状密闭结构,外形为弧形,且设有充气口,充气口设有充气阀门;所述刚性托架设置在可充气气囊的底部,用于固定和支撑可充气气囊。经过充气阀门为可充气气囊充气,将高超声速巡航导弹放置在可充气气囊上,对具有近圆但非圆外形且不允许局部支撑接触压力过大的高超声速导弹的柔性随形可调刚度支撑,避免了由于局部支撑压力过大造成高超声速导弹热防护结构的破坏。

    基于深度学习的高分辨率图像中小目标检测方法

    公开(公告)号:CN116977724A

    公开(公告)日:2023-10-31

    申请号:CN202310914454.9

    申请日:2023-07-24

    Abstract: 基于深度学习的高分辨率图像中小目标检测方法,解决了目前采用深度学习在高分辨率图像中检测小目标时容易使目标信息大量丢失的问题,属于目标检测算法领域。本发明包括:将高分辨率图像均匀裁剪成多张小尺寸图像;随机不重复地从小尺寸图像中抽取一部分图像输入到目标检测网络中,输出目标检测结果,目标检测结果能够表示目标在小尺寸图像中的位置,并且能够表示出现在小尺寸图像中的部分目标占整个目标的比例;筛选目标检测结果,保留真正的目标并剔除重复的目标检测结果,并根据目标检测结果确定目标相对图像的位置;重复从小尺寸图像中抽取图像检测目标,直到检测到所有目标。

    一种悬吊式四自由度运动模拟系统及使用方法

    公开(公告)号:CN113212816A

    公开(公告)日:2021-08-06

    申请号:CN202110600514.0

    申请日:2021-05-31

    Abstract: 本发明公开了一种悬吊式四自由度运动模拟系统及使用方法,属于地面微重力模拟试验技术领域。竖直悬吊绳的上端连接有由二维平动运动系统和竖直升降系统构成的动态伺服系统,恒力保持系统安装在竖直悬吊绳下端,三自由度转动系统悬吊在恒力保持系统的下方,其中,竖直悬吊绳,用于提供载荷竖直方向的悬吊和升降;恒力保持系统,用于提供竖直悬吊绳的恒力保持;三自由度转动系统,用于提供三自由度被动转动。本发明普适性强,适用于大多数中小型航天器的全自由度地面微重力模拟试验;重力补偿精度高,采用组合弹簧被动保持和力矩电机主动补偿两阶段进行重力补偿;运动范围大,可采用完整球与半球窝形式,使得偏航方向可连续转动。

    一种悬吊式四自由度运动模拟系统及使用方法

    公开(公告)号:CN113212816B

    公开(公告)日:2022-04-12

    申请号:CN202110600514.0

    申请日:2021-05-31

    Abstract: 本发明公开了一种悬吊式四自由度运动模拟系统及使用方法,属于地面微重力模拟试验技术领域。竖直悬吊绳的上端连接有由二维平动运动系统和竖直升降系统构成的动态伺服系统,恒力保持系统安装在竖直悬吊绳下端,三自由度转动系统悬吊在恒力保持系统的下方,其中,竖直悬吊绳,用于提供载荷竖直方向的悬吊和升降;恒力保持系统,用于提供竖直悬吊绳的恒力保持;三自由度转动系统,用于提供三自由度被动转动。本发明普适性强,适用于大多数中小型航天器的全自由度地面微重力模拟试验;重力补偿精度高,采用组合弹簧被动保持和力矩电机主动补偿两阶段进行重力补偿;运动范围大,可采用完整球与半球窝形式,使得偏航方向可连续转动。

Patent Agency Ranking