基于深度神经网络的水果检测方法及系统

    公开(公告)号:CN113313708A

    公开(公告)日:2021-08-27

    申请号:CN202110737328.1

    申请日:2021-06-30

    Abstract: 本发明公开一种基于深度神经网络的水果检测方法,包括如下步骤:S1、相机采集图像,所述图像中包含至少一个目标物体;S2、将采集到的图像输入神经网络,神经网络输出含有检测框的目标物体及其置信度得分;S3、检测并删除图像中各目标物体的冗余检测框,剩余检测框内的图像即为目标物体图像。YOLOv4‑SPP2模型融合神经网络特征图多尺度信息,从而提高了目标尺度变化大和小目标检测的精确度,通过本发明提供的Greedy‑Confluence的边界框抑制算法来提高遮挡、重叠物体的检测精度,提高了复杂环境下的水果检测精度。

    基于深度神经网络的水果检测方法及系统

    公开(公告)号:CN113313708B

    公开(公告)日:2022-10-18

    申请号:CN202110737328.1

    申请日:2021-06-30

    Abstract: 本发明公开一种基于深度神经网络的水果检测方法,包括如下步骤:S1、相机采集图像,所述图像中包含至少一个目标物体;S2、将采集到的图像输入神经网络,神经网络输出含有检测框的目标物体及其置信度得分;S3、检测并删除图像中各目标物体的冗余检测框,剩余检测框内的图像即为目标物体图像。YOLOv4‑SPP2模型融合神经网络特征图多尺度信息,从而提高了目标尺度变化大和小目标检测的精确度,通过本发明提供的Greedy‑Confluence的边界框抑制算法来提高遮挡、重叠物体的检测精度,提高了复杂环境下的水果检测精度。

Patent Agency Ranking