Abstract:
본 발명에 따른 부식진단장치는 콘크리트 구조물 내부에 배치되는 감지구조물; 상기 감지구조물과 연결되어 콘크리트 구조물의 외부까지 형성되는 연결선; 상기 연결선의 단부에 형성되는 단자부를 포함한다. 또한 본 발명에 따른 콘크리트 구조물 부식진단방법은 콘크리트 구조물을 시공하면서 상기 콘크리트 구조물 내부에 감지구조물을 설치하는 단계; 상기 감지구조물에 연결되며, 상기 콘크리트 구조물 외부에 까지 형성되는 연결선을 인출하는 단계; 상기 연결선의 단부에 단자부를 마련하는 단계; 상기 단자부에 측정장치를 연결시켜 콘트리트 구조물의 내부부식을 측정하는 단계를 포함한다. 따라서 본 발명에 의해 제조된 부식진단장치는 전기저항 혹은 광신호 전달 저항이 부식에 의하여 변화하는 물질로 형성된 감지구조물(예로써 선, 루프, 망등)을 콘크리트 시공 시에 콘크리트 내부에 함께 설치하고 연결선을 통해 콘크리트 구조물 외부로 단자를 인출하여, 콘크리트 구조물의 내구성 평가가 필요한 임의 시점에 도달하였을 때, 감지구조가 나타내는 전기저항 혹은 광신호 전달저항을 측정하고 이전의 데이터와 비교를 함으로써 콘크리트구조물 내부의 손상이나 노후 정도를 손쉽게 진단할 수 있는 효과가 있다.
Abstract:
본 발명에 따른 부식진단장치는 콘크리트 구조물 내부에 배치되는 감지구조물; 상기 감지구조물과 연결되어 콘크리트 구조물의 외부까지 형성되는 연결선; 상기 연결선의 단부에 형성되는 단자부를 포함한다. 또한 본 발명에 따른 콘크리트 구조물 부식진단방법은 콘크리트 구조물을 시공하면서 상기 콘크리트 구조물 내부에 감지구조물을 설치하는 단계; 상기 감지구조물에 연결되며, 상기 콘크리트 구조물 외부에 까지 형성되는 연결선을 인출하는 단계; 상기 연결선의 단부에 단자부를 마련하는 단계; 상기 단자부에 측정장치를 연결시켜 콘트리트 구조물의 내부부식을 측정하는 단계를 포함한다. 따라서 본 발명에 의해 제조된 부식진단장치는 전기저항 혹은 광신호 전달 저항이 부식에 의하여 변화하는 물질로 형성된 감지구조물(예로써 선, 루프, 망등)을 콘크리트 시공 시에 콘크리트 내부에 함께 설치하고 연결선을 통해 콘크리트 구조물 외부로 단자를 인출하여, 콘크리트 구조물의 내구성 평가가 필요한 임의 시점에 도달하였을 때, 감지구조가 나타내는 전기저항 혹은 광신호 전달저항을 측정하고 이전의 데이터와 비교를 함으로써 콘크리트구조물 내부의 손상이나 노후 정도를 손쉽게 진단할 수 있는 효과가 있다.
Abstract:
본 발명은 인산염계 수산화물의 삼차원 나노구조체 및 그 제조방법에 관한 것으로, 촉매 또는 광촉매로서 유해물질을 분해시킬 수 있는 삼차원 나노구조체를 제공하며, 이를 간단한 방법을 통하여 제조할 수 있는 삼차원 나노구조체의 제조방법을 제공함으로써, 경제적일뿐만 아니라 광흡수특성과 표면특성을 개선하며, 비표면적이 크고 화학적, 물리적으로 안정한 삼차원 나노구조체를 제공할 수 있다.
Abstract:
유리 기판 상에 양이온 치환형 투명전극을 형성하고, 양이온 치환형 투명전극 상에 이산화티탄의 Ti 사이트의 일부를 다른 원자, 예를 들어 Nb, Ta, Mo, As, Sb, W, V, Mn, Tc, Re, P, Bi 등 으로 치환하여 얻어지는 물질을 적층하여 다층형 투명 전극을 형성한다. 열 산화 공정 및 화학 반응 공정 시, 열적 안정성 및 화학적 안정성이 확보된 다층 구조의 투명 전도막을 저 비용으로 형성할 수 있다.
Abstract:
A method for preparing ceramic powder is provided to produce nano-size ceramic powder having a large specific surface area, a low cohesion, and a uniform particle size distribution through a simple process, and to reduce a manufacturing cost. A method for preparing ceramic powder includes the steps of: mixing a metal oxide powder and a water-soluble carbon hydrate powder with water, and drying the mixture at 20-150 °C to prepare a metal oxide-carbon hydrate precursor; and reacting the metal oxide-carbon hydrate precursor at 900-1600 °C under an inert gas or nitrogen atmosphere for 2-5 hours. The ceramic powder is selected from metal suboxide powder, metal nitride powder, and metal carbide powder.
Abstract:
PURPOSE: A working electrode for opto-electrochemical cell and apparatus using the same are provided to reduce the number of loss electronics. CONSTITUTION: The electrode for opto-electrochemical cell(200) comprises the transparent conductive substrate(210), and the optical catalyst substance layer(220) and metal oxidation coated layer(230). The optical catalyst substance layer is formed on the substrate. The metal oxide film layer is formed in the optical catalyst substance layer. The metal oxide film layer has the band gap lager than the band gap of the optical catalyst substance layer. The metal oxide film layer improves the optical transmittance of light.
Abstract:
A method for manufacturing a stacked electrode using an electrochemical oxidation method and an application of the same to a dye-sensitized solar cell electrode are provided to enhance largely photoelectric conversion efficiency by recovering the resistance of a transparent electrode at a low level. An oxide semiconductor precursor is coated on a transparent conductive layer. The transparent conductive layer coated with the oxide semiconductor precursor is processed thermally in atmosphere of oxidation. A stacked electrode of an oxide semiconductor layer and the transparent conducting layer is formed by processing thermally the transparent conducting layer. A thermal process for the stacked electrode is performed under the atmosphere of reduction. An electrochemical oxidation is performed after the thermal process is performed under the atmosphere of reduction.
Abstract:
A production method of hydrogen energy is provided to make it possible to produce a larger amount of hydrogen energy, environmentally friendly alternative energy, at a lower production cost without environmental pollution by combining a photocatalytic water splitting unit with solar cells. A method of producing hydrogen energy by photocatalytic water splitting comprises combining a photocatalytic water splitting unit using sunlight with solar cells to which voltage can be applied by sunlight. The photocatalytic water splitting unit is photoelectrochemical cells including an operating electrode, a counter electrode, and an electrolyte. The solar cells include an operating electrode and a counter electrode, and the combining process is carried out by connecting the operating electrodes of the solar cells to the counter electrodes of the photoelectrochemical cells, and connecting the counter electrodes of the solar cells to the operating electrodes of the photoelectrochemical cells.
Abstract:
본 발명은 텅스텐(Tungsten)을 포함하는 특정 조성의 복합 산화물 반도체로, 자외선 뿐만 아니라 가시광선 및 형광등을 효율적으로 흡수하는 빛 응답성이 우수한 가시광 응답형 광촉매 조성물 및 그 제조방법을 제공함으로써, 태양광 중 많은 비중을 차지하는 가시광선에 감응할 수 있을 뿐만 아니라 실내등에서도 감응할 수 있어, 휘발성 유기화합물이나 새집증후군을 발생시키는 유해 유기물을 분해할 수 있는 효과가 있는 발명이다.
Abstract:
본 발명은 광촉매 유기 오염물질 분해 장치와 태양 전지를 결합하여 태양 전지의 기전력을 이용하는 유기 오염물질 분해 방법 및 이를 이용한 시스템에 관한 것이다. 본 발명은, 광촉매반응을 이용하여 유기 오염물질을 분해하는 방법에 있어서, 광에너지를 이용한 광촉매 유기 오염물질 분해 장치와 광에너지에 의하여 전압을 가할 수 있는 태양전지를 결합하여, 광에너지를 이용하여 태양전지에서 생산된 전압을, 광에너지를 이용하여 유기 오염물질을 분해하는 광촉매 유기 오염물질 분해 장치에 제공하여 유기 오염물질의 분해가 수행되는 것을 특징으로 하는 광촉매 유기 오염물질 분해 방법이다. 이와 같은 본 발명에 의하면, 광에너지를 이용한 광촉매 유기 오염물질 분해 장치와 태양 전지를 결합시켜, 광에너지를 활용하는 태양 전지로부터 전압을 받아 보다 저가의 비용으로 오염물질 분해량을 크게 증가시킬 수 있는 유기 오염물질 분해 방법 및 이를 이용한 시스템을 제공한다. 광촉매, 유기물, 오염물질, 분해, 태양 전지, 전압, 친환경.