적외 채널을 이용한 화산재 탐지방법 및 화산재의 특성값 도출방법
    2.
    发明授权
    적외 채널을 이용한 화산재 탐지방법 및 화산재의 특성값 도출방법 有权
    使用红外线通道数据的火山灰检测方法和火山灰特定值的测定方法

    公开(公告)号:KR101429260B1

    公开(公告)日:2014-08-28

    申请号:KR1020130090138

    申请日:2013-07-30

    Abstract: The present invention relates to a volcanic ash detection method using an infrared channel and a method of deriving a characteristic value of a volcanic ash for detecting the volcanic ash using an infrared channel observation data of a satellite while deriving the characteristic value of the volcanic ash. The volcanic ash detection method using an infrared channel and the method of deriving a characteristic value of a volcanic ash according to the present invention convert the radiation observation data, which is observed from a detection sensor of a satellite, to a brightness temperature and reflectance of each channel, determine as an volcanic ash pixel when a condition of a brightness temperature difference of an infrared channel, in which a wavelength range is 11μm, 12μm, and the condition of the brightness temperature difference of the infrared channel, in which a wavelength range is 11μm, 12μm, 3.7μm, in an image pixel of a satellite image is simultaneously satisfied after a cloud pixel and a sand dust pixel are removed, determine an elevation of the volcanic ash using weather analysis data, create a theoretical amount of radiation according to a characteristic of the volcanic ash in the form of a table by using public volcanic ash model data and derive an optical thickness and a size of a volcanic ash particle by comparing the finally determined brightness temperature value of the volcanic ash pixel to the table. According to the present invention, a volcanic ash component in the atmosphere can be automatically detected in near-real-time from night and day by using the satellite, so the volcanic ash can be more accurately detected by minimizing interference from the sand dust component such as yellow dust, and the elevation of the volcanic ash, the optical thickness of the volcanic ash and the particle size (effective radius) of the volcanic ash can be simultaneously analyzed.

    Abstract translation: 本发明涉及使用红外线通道的火山灰检测方法和使用卫星的红外线通道观测数据导出火山灰的特征值的方法,同时导出火山灰的特征值。 根据本发明的使用红外线通道的火山灰检测方法和导出火山灰特征值的方法将从卫星的检测传感器观察到的辐射观测数据转换为亮度温度和反射率 每个通道,当波长范围为11μm,12μm的红外线通道的亮度温度差和红外线通道的亮度温度差的条件为波长范围时,确定为火山灰像素 是11μm,12μm,3.7μm,在云像素和沙尘像素被去除之后,卫星图像的图像像素同时满足,使用天气分析数据确定火山灰的高程,产生理论量的辐射 通过使用公共火山灰模型数据以桌子形式的火山灰的特征,并导出光学厚度a 通过将火山灰像素的最终确定的亮度温度值与表相比较来计算火山灰颗粒的尺寸。 根据本发明,通过使用卫星,可以从夜晚几天近乎实时地自动检测大气中的火山灰成分,因此可以通过最小化来自沙尘成分的干扰来更精确地检测火山灰 可以同时分析黄粉尘,火山灰的高程,火山灰的光学厚度和火山灰的粒径(有效半径)。

    LIDAR 시스템의 광학 정렬 장치
    3.
    发明授权
    LIDAR 시스템의 광학 정렬 장치 有权
    激光雷达系统的光学对准装置

    公开(公告)号:KR101396003B1

    公开(公告)日:2014-05-16

    申请号:KR1020130043466

    申请日:2013-04-19

    Abstract: The present invention relates to an optical alignment device of a LIDAR system including a telescope, a laser, a beam separator, a pin hole, a collimating lens, and an oil film reflector. The telescope includes first and second mirrors and is installed in the lower side of a frame. The laser is installed on the rear side of the telescope and irradiates the telescope with laser light. The beam separator is installed on the front side of the telescope and divides the laser light into two beams. The pin hole is installed between the bema separator and the telescope and forms a focus of the laser light. The collimating lens is installed between the pin hole and the beam separator and makes the laser light passing through the pin hole with parallel light and collects the laser light returned. The oil film reflector reflects the laser light passing through the beam separator. According to the composition, an optical system is easily accurately aligned without a disassembly work of the optical system for inspecting the optical alignment during observation or when the optical system for the atmospheric observation is installed. Accurate optical alignment between channels can be formed in a short time regardless of the number of channels of an optical reception terminal.

    Abstract translation: 本发明涉及一种包括望远镜,激光,光束分离器,针孔,准直透镜和油膜反射器的激光雷达系统的光学对准装置。 望远镜包括第一和第二反射镜,并安装在框架的下侧。 激光器安装在望远镜的后侧,并用激光照射望远镜。 光束分离器安装在望远镜的前侧,将激光分成两束。 针孔安装在bema分离器和望远镜之间,形成激光的焦点。 准直透镜安装在针孔和光束分离器之间,使激光以平行光通过针孔,并收集返回的激光。 油膜反射器反射穿过分束器的激光。 根据该构成,光学系统在没有光学系统的拆卸工作的情况下容易精确对准,用于在观察期间或当安装用于大气观察的光学系统时检查光学对准。 可以在短时间内形成通道之间的精确光学对准,而与光接收终端的通道数无关。

    광범위 신호 측정 시스템 및 방법
    4.
    发明公开
    광범위 신호 측정 시스템 및 방법 有权
    宽范围信号检测系统及使用该方法的方法

    公开(公告)号:KR1020150054333A

    公开(公告)日:2015-05-20

    申请号:KR1020130136666

    申请日:2013-11-12

    Abstract: 본발명은광선증폭관을통해수신되는신호의레벨에따른영향을거의받지않으며, 미약한신호레벨과과도한신호레벨, 양자에대해유효한측정을수행하는광범위신호측정시스템및 방법을제안한다. 이를위해본 발명은 ADC(Analog to Digital Converter) 및포톤카운터(Photon Counter)를통해광전증폭관(Photo Multiplier Tube)의신호를수신하는분석단말기를통해수행되며, ADC와포톤카운터에서출력되는 ADC 신호와포톤카운터신호에대해각각제1파일과제2파일을생성하는단계, 제1파일과상기제2파일에대한검측시간을동기화하는단계및 ADC 신호와포톤카운터신호가동일패턴을보이는선형구간을기준으로제1파일과제2파일의유효신호영역을결합하는단계를포함하여구성될수 있다.

    Abstract translation: 提供了一种宽范围的信号检测系统及使用该方法的方法,以便通过光电倍增管接收的信号的电平几乎没有影响,并且执行弱信号电平和过大信号电平的有效测量。 本发明的方法通过分析终端进行,该分析终端通过模数转换器(ADC)和光子计数器接收光电倍增管的信号。 本发明的方法包括以下步骤:在ADC信号和ADC上输出的光子计数器信号和光子计数器上创建第一文件和第二文件; 在第一文件和第二文件上同步测量时间; 并且将第一文件和第二文件的有效信号区域与ADC信号和光子计数器信号显示与标准相同的图案的线性部分组合。

    고해상도 지도를 제작하기 위한 풍선 위성 및 이를 위한 방법
    5.
    发明授权
    고해상도 지도를 제작하기 위한 풍선 위성 및 이를 위한 방법 有权
    BALLON卫星制作高分辨率地图及其方法

    公开(公告)号:KR101547951B1

    公开(公告)日:2015-08-27

    申请号:KR1020140139359

    申请日:2014-10-15

    CPC classification number: G01C11/34

    Abstract: 본 발명은 고해상도 지도를 제작하기 위한 풍선 위성 및 이를 위한 방법에 관한 것으로, 이러한 본 발명은 비행 제한 고도 아래의 공중에 떠 있는 풍선과, 풍선과 연결되며, 공중에서 지상의 관심 영역을 촬영하여 고해상도 영상을 획득하고, 획득된 고해상도 영상을 정사 영상으로 변환하고, 변환된 정사 영상을 기 저장된 위성 지도에 병합하여 상기 관심 영역이 고해상도의 영상을 가지는 지도를 생성하는 관측플랫폼을 포함한다.

    Abstract translation: 本发明涉及一种用于制造高分辨率图的气球卫星及其方法。 本发明包括:在空中低于飞行限制高度的气球; 以及观察平台,与气球连接并在空中拍摄地面的感兴趣区域,以获得高分辨率图像,并将获得的高分辨率图像转换为邻图像,并将转换的正交图像合并到预先存储的卫星图中 生成感兴趣区域具有高分辨率图像的地图。

Patent Agency Ranking