Abstract:
다양한 반도체 결정재료를 간편하게 단일층 또는 100 nm 이하 두께의 다층 반도체 나노층으로 대량 생산하는 방법을 제공한다. 양전극에 연결되고 층상 구조를 가지는 반도체 결정재료와 음전극을 비금속성 음이온을 가지는 전해질 용액에 담근 다음, 상기 양전극에 양의 전압을 인가하고 상기 음전극에 음의 전압을 인가한다. 상기 음이온을 상기 반도체 결정재료의 층 사이에 삽입하여 층을 박리시킨다.
Abstract:
The present invention relates to a method of manufacturing a graphene-poly(diallyldimethylammoniumchloride) (PDDA)-iron oxide nanoparticle composite material of free standing by performing decompression filtering and drying after forming a mixed solution by mixing a graphene-PDDA solution and an iron oxide nanoparticle solution. The present invention is able to easily manufacture a composite material for a sensor electrode for hydrogen peroxide detection with excellent reproducibility by fabricating iron oxide nanoparticles in graphene. A sensor for hydrogen peroxide detention manufactured thereby is able to easily measure the concentration of hydrogen peroxides included in a sample by using an electrochemical method in a short time, is able to sensitively measure a small quantity of hydrogen peroxide included in a sample and is stable since enzymes are not used.
Abstract:
PURPOSE: A droplet micro gripper and a method for attaching a solder ball using the same are provided to reduce equipment costs by self-aligning a solder ball for a package on a droplet using the droplet micro gripper and attaching the solder ball to a semiconductor chip substrate. CONSTITUTION: A hydrophilic droplet(120) is formed on a drop micro gripper(65). A solder ball(125) is self-aligned on the droplet. The solder ball is in droplet self-aligned. The droplet micro gripper and a substrate(150) are aligned while the solder ball is interposed. The solder ball is transferred on the substrate. The droplet micro gripper is removed. The solder ball is attached to the substrate by reflowing the solder ball.
Abstract:
PURPOSE: A method is provided to obtain oxidation graphene of the high quality simple and easily. CONSTITUTION: The oxidation graphene manufacturing method includes: the step (S1) where graphite sample and electrode plate is dipped in the electrolyte solution; the step (S2) forming the oxidation graphene layer by oxidizing surface of the graphite sample and turn the power which has the electrode plate as the cathode and graphite sample as the anode; and the step (S3) which fails the oxidation graphene layer from the graphite surface of specimen by using the gas in which the negative ion among the electrolyte solution moves towards the graphite sample and formed.