뫼스바우어 분광법을 이용한 도자기 색도의 소성분위기 조건결정에 따른 청자 제조방법
    1.
    发明授权
    뫼스바우어 분광법을 이용한 도자기 색도의 소성분위기 조건결정에 따른 청자 제조방법 有权
    根据塑性气氛条件决定陶瓷色度的青瓷制造方法

    公开(公告)号:KR101370864B1

    公开(公告)日:2014-03-07

    申请号:KR1020120071663

    申请日:2012-07-02

    Abstract: 본 발명은 뫼스바우어 분광법을 이용한 도자기 색도의 소성분위기 조건결정에 따른 청자 제조방법에 관한 것으로서, 더욱 상세하게는 10
    -12 eV 의 정확도를 가지는 뫼스바우어 분광법을 이용하여 도자기 유약 층의 정량적인 Fe이온의 이온가를 측정함으로써, 고온의 소성환원과정에서 도자기 유약 층에서 환원반응에 의해 생성되는 Fe
    2
    + 와 Fe
    3
    + 의 정확한 Fe금속의 이온 비를 결정할 수 있고, 소성 환원가스인 LPG 가스 량에 따른 환원도를 정량적으로 제시함으로써, 보다 정확한 청자의 환원도를 알 수 있으며, 도자기의 소성환원조건에 따라 유약 층의 색도(
    L *,
    a *,
    b *)를 데이터를 측정하여 Fe이온가와 색도와의 정량적인 소성 환원분위기를 제시함으로써, 청자의 비색에 따른 제조하는 소성환원분위기의 결정방법을 정량적으로 제시할 수 있고, 제조자가 소성환원분위기 조절을 통해 Fe이온가를 정량적으로 조절이 가능함은 물론 원하는 비색의 청자를 제조할 수 있는 효과가 있다.

    뫼스바우어 분광법을 이용한 출토된 고려청자 유물의 제조조건 분별방법
    2.
    发明授权
    뫼스바우어 분광법을 이용한 출토된 고려청자 유물의 제조조건 분별방법 有权
    使用MSPECTROSCOPY进行的KORYO CELADON关系的制造条件解析方法

    公开(公告)号:KR101303176B1

    公开(公告)日:2013-09-17

    申请号:KR1020120071652

    申请日:2012-07-02

    Abstract: PURPOSE: A method using Mossbauer spectroscopy for classifying manufacturing conditions of excavated Goryeo celadon is provided to measure an ion change which is interactive between a glaze layer and a basis material layer and to suggest a quantitative firing reduction atmosphere of a Fe ionic valency, thereby suggesting a quantitative firing reduction atmosphere determination method and a standardized Goryeo celadon manufacturing method. CONSTITUTION: A method using Mossbauer spectroscopy for classifying manufacturing conditions of excavated Goryeo celadon includes the following steps of: separating the excavated Groyeo celadon into a glaze layer and a basis material layer and grinding samples of the glaze layer and the basis material layer; packing the ground samples of 20-50 mg by surrounding with a silver foil tape to be in a size of one inch; acquiring Mossbauer spectra from the packed samples of the glaze layer and the basis material layer with Mossbauer spectroscopy equipment respectively; analyzing the Mossbauer spectra with a line and quadruple and classifying the analyzed Mossbauer spectra into a ferrous ion and a ferric ion according to the movement of isomers; calculating a Fe ion rate of the glaze layer to the basis material layer by dividing the glaze layer and the basis material layer, which are classified by the relative rate of the classified ferrous ion and ferric ion, by the Fe ion rate and charting the same on a graph using two point indexes of the ferrous ion and the ferric ion in respect to one Goryeo celadon sample; calculating a relative reduction value by dividing the point index of the ferrous ion by the point index of the ferric ion and filling the relative reduction value on the graph with numbers; and classifying relative reduction values as similar groups by classifying the relative reduction values by similar reduction conditions. [Reference numerals] (AA) Step of separating the excavated Groyeo celadon into a glaze layer and a basis material layer and grinding samples of the glaze layer and the basis material layer; (BB) Step of packing the ground samples of 20-50 mg in a size of one inch by surrounding the samples with a silver foil tape; (CC) Step of acquiring Mossbauer spectra from the packed samples of the glaze layer and the basis material layer with Mossbauer spectroscopy equipment respectively; (DD) Step of analyzing the Mossbauer spectra with a line and quadruple and classifying the analyzed Mossbauer spectra into a ferrous ion and a ferric ion according to the movement of isomers; (EE) Step of calculating and making a graph of a Fe ion rate of the glaze layer to the basis material layer by dividing the glaze layer and the basis material layer, which are classified by the relative rate of the classified ferrous ion and ferric ion; (FF) Step of charting the same on a graph using two point indexes of the ferrous ion and the ferric ion in respect to one Goryeo celadon sample; (GG) Step of calculating a relative reduction value by dividing the point index of the ferrous ion by the point index of the ferric ion and filling the relative reduction value on the graph with numbers; (HH) Step of classifying relative reduction values as similar groups by classifying the relative reduction values by similar reduction conditions

    Abstract translation: 目的:提供一种使用Mossbauer光谱法分类挖掘的高丽青瓷的制造条件进行分类的方法,以测量釉层和基材层之间的相互作用的离子变化,并提出Fe离子价态的定量煅烧还原气氛,从而表明 定量焙烧还原气氛测定方法和标准化高丽青瓷制造方法。 构成:使用Mossbauer光谱法对挖掘的高丽青瓷的制造条件进行分类的方法包括以下步骤:将开挖的Groyeo青瓷分为釉层和基材层,研磨釉层和基材层的样品; 用银箔胶带包裹20-50毫克的地面样品,尺寸为一英寸; 分别从Mossbauer光谱设备的釉料层和基材层的包装样品中获取Mossbauer光谱; 根据异构体的运动,用线和四重分析Mossbauer光谱,并将分析的Mossbauer光谱分类为亚铁离子和铁离子; 通过将分级的亚铁离子和铁离子的相对速率分类的釉层和基材层划分为基体材料层的Fe离子速率乘以Fe离子速率并绘制相同 在一个高丽青瓷样品上使用亚铁离子和铁离子的两个点指数的图表; 通过将亚铁离子的点指数除以三价铁离子的点指数并用数字填充相对减少值来计算相对减少值; 并通过相似的减少条件对相对减少值进行分类,将相对减少值分类为相似组。 (附图标记)(AA)将挖出的Groyeo青瓷分为釉层和基材层并研磨釉层和基材层的样品的步骤; (BB)通过用银箔带包围样品,将尺寸为一英寸的20-50mg的研磨样品包装在一起; (CC)分别从Mossbauer光谱设备从釉料层和基材层的包装样品中获取Mossbauer光谱的步骤; (DD)以线和四倍分析莫斯鲍尔光谱的步骤,并根据异构体的运动将分析的莫斯鲍尔光谱分解成亚铁离子和铁离子; (EE)通过划分釉层和基材层来计算和制造釉层的Fe离子速率与基材层的图,其被分类为分类的亚铁离子和铁离子的相对速率 ; (FF)使用亚铁离子和铁离子相对于一个高丽青瓷样品的两个点指数在图上绘制相同的步骤; (GG)通过将亚铁离子的点指数除以三价铁离子的点指数并用数字填充该图上的相对减少值来计算相对减少值的步骤; (HH)通过相似的减少条件对相对减少值进行分类,将相对减少值分类为相似组的步骤

    뫼스바우어 분광법을 이용한 도자기 색도의 소성분위기 조건결정에 따른 청자 제조방법
    3.
    发明公开
    뫼스바우어 분광법을 이용한 도자기 색도의 소성분위기 조건결정에 따른 청자 제조방법 有权
    采用MSPECTROSCOPY的塑料色泽条件决定色素的制备方法

    公开(公告)号:KR1020140004338A

    公开(公告)日:2014-01-13

    申请号:KR1020120071663

    申请日:2012-07-02

    CPC classification number: C04B33/24 C04B33/34 C04B41/86

    Abstract: The present invention relates to a method for manufacturing celadon using Mossbauer spectroscopy according to decisions on plasticity atmosphere conditions of pottery chromacity and, more specifically, to a method for manufacturing celadon using Mossbauer spectroscopy according to decisions on plasticity atmosphere conditions of pottery chromacity which: measures quantitative ionic valency of Fe ions on a ceramic glaze layer using the Mossbauer spectroscopy having 10^-12eV of accuracy in order to decide accurate ion ratio of the Fe metals in Fe^2+ and Fe^3+ produced by reduction reaction of a ceramic glaze layer during a high temperature reduction firing process; gives accurate reduction intensity of the celadon by quantitavely suggesting the reduction intensity according to the amount of LPG gas which is reduction firing gas; quantitavely suggests a decision method of the reduction firing condition which manufactures according to celadon green of the celadon by measuring data of chromacity (L*,a*,b*) of the glaze layer according to the firing reduction condition of the pottery and suggesting quantitative reduction firing condition of the Fe ionic valency and the chromacity; quantitatively controls the Fe ionic valency through reduction firing condition adjustment by a manufacturer; and manufactures desired colored celadon. [Reference numerals] (AA) Step of primary heating white porcelain testing piece in furnace while increasing 3°C per minute from room temperature to 900°C; (BB) Step of cooling the primarily heated white porcelain testing piece from 900°C to room temperature after maintaining at 900°C for one hour; (CC) Step of mixing glaze with the cooled white porcelain testing piece and coating the white porcelain testing piece with the glaze with a density of 1-2 g/cc; (DD) Step of secondary heating the glaze coated white porcelain while increasing 3°C per minute from room temperature to 900°C in the furnace; (EE) Step of tertiary heating the secondarily heated white porcelain while increasing 1°C per minute from 900°C to 1260°C in the furnace which supplies 0-35L/min of LPG gas which is reduction gas and 7L/min of air; (FF) Step of cooling the tertiarily heated white porcelain from 1260°C to room temperature after maintaining at 1260°C for one hour

    Abstract translation: 本发明涉及一种使用莫斯鲍尔光谱法根据陶瓷色度的可塑性气氛条件的决定制造青瓷的方法,更具体地说,涉及使用莫斯鲍尔光谱法根据陶瓷色度的可塑性气氛条件决定制造青瓷的方法: 使用具有10 ^ 12eV精度的Mossbauer光谱法测定陶瓷釉层上的Fe离子的定量离子价态,以便确定由陶瓷的还原反应产生的Fe 2+和Fe 3+中的Fe金属的精确离子比 在高温降温烧制过程中的釉层; 通过定量提示根据作为还原燃烧气体的LPG气体的量的还原强度,给出了青瓷的精确还原强度; 定量地提出了根据陶瓷的烧制还原条件测量釉层的色度数据(L *,a *,b *),根据陶瓷的青瓷青色制造的还原烧制条件的决定方法,并提出定量 Fe离子价和还原烧成条件; 通过制造商的还原烧制条件定量控制Fe离子价态; 并制造所需的彩色青瓷。 (标号)(AA)炉中一次加热白瓷试验片的步骤,同时每分钟从室温升至900℃; (BB)在900℃保持1小时后,将初步加热的白瓷测试件从900℃冷却至室温的步骤; (CC)将釉料与冷却的白瓷测试片混合,并用釉料以1-2g / cc的密度涂覆白瓷测试片; (DD)在炉中二次加热釉料白瓷,同时每分钟从室温升温至900℃; (EE)在炉中提供0-35L / min的LPG气体,其为还原气体和7L / min空气的炉中,从900℃至1260℃每分钟从1℃提高1℃的三次加热二次加热白瓷的步骤 ; (FF)在1260℃保持1小时后,将一次加热的白瓷从1260℃冷却至室温的步骤

Patent Agency Ranking