뫼스바우어 분광법을 이용한 출토된 고려청자 유물의 제조조건 분별방법
    1.
    发明授权
    뫼스바우어 분광법을 이용한 출토된 고려청자 유물의 제조조건 분별방법 有权
    使用MSPECTROSCOPY进行的KORYO CELADON关系的制造条件解析方法

    公开(公告)号:KR101303176B1

    公开(公告)日:2013-09-17

    申请号:KR1020120071652

    申请日:2012-07-02

    Abstract: PURPOSE: A method using Mossbauer spectroscopy for classifying manufacturing conditions of excavated Goryeo celadon is provided to measure an ion change which is interactive between a glaze layer and a basis material layer and to suggest a quantitative firing reduction atmosphere of a Fe ionic valency, thereby suggesting a quantitative firing reduction atmosphere determination method and a standardized Goryeo celadon manufacturing method. CONSTITUTION: A method using Mossbauer spectroscopy for classifying manufacturing conditions of excavated Goryeo celadon includes the following steps of: separating the excavated Groyeo celadon into a glaze layer and a basis material layer and grinding samples of the glaze layer and the basis material layer; packing the ground samples of 20-50 mg by surrounding with a silver foil tape to be in a size of one inch; acquiring Mossbauer spectra from the packed samples of the glaze layer and the basis material layer with Mossbauer spectroscopy equipment respectively; analyzing the Mossbauer spectra with a line and quadruple and classifying the analyzed Mossbauer spectra into a ferrous ion and a ferric ion according to the movement of isomers; calculating a Fe ion rate of the glaze layer to the basis material layer by dividing the glaze layer and the basis material layer, which are classified by the relative rate of the classified ferrous ion and ferric ion, by the Fe ion rate and charting the same on a graph using two point indexes of the ferrous ion and the ferric ion in respect to one Goryeo celadon sample; calculating a relative reduction value by dividing the point index of the ferrous ion by the point index of the ferric ion and filling the relative reduction value on the graph with numbers; and classifying relative reduction values as similar groups by classifying the relative reduction values by similar reduction conditions. [Reference numerals] (AA) Step of separating the excavated Groyeo celadon into a glaze layer and a basis material layer and grinding samples of the glaze layer and the basis material layer; (BB) Step of packing the ground samples of 20-50 mg in a size of one inch by surrounding the samples with a silver foil tape; (CC) Step of acquiring Mossbauer spectra from the packed samples of the glaze layer and the basis material layer with Mossbauer spectroscopy equipment respectively; (DD) Step of analyzing the Mossbauer spectra with a line and quadruple and classifying the analyzed Mossbauer spectra into a ferrous ion and a ferric ion according to the movement of isomers; (EE) Step of calculating and making a graph of a Fe ion rate of the glaze layer to the basis material layer by dividing the glaze layer and the basis material layer, which are classified by the relative rate of the classified ferrous ion and ferric ion; (FF) Step of charting the same on a graph using two point indexes of the ferrous ion and the ferric ion in respect to one Goryeo celadon sample; (GG) Step of calculating a relative reduction value by dividing the point index of the ferrous ion by the point index of the ferric ion and filling the relative reduction value on the graph with numbers; (HH) Step of classifying relative reduction values as similar groups by classifying the relative reduction values by similar reduction conditions

    Abstract translation: 目的:提供一种使用Mossbauer光谱法分类挖掘的高丽青瓷的制造条件进行分类的方法,以测量釉层和基材层之间的相互作用的离子变化,并提出Fe离子价态的定量煅烧还原气氛,从而表明 定量焙烧还原气氛测定方法和标准化高丽青瓷制造方法。 构成:使用Mossbauer光谱法对挖掘的高丽青瓷的制造条件进行分类的方法包括以下步骤:将开挖的Groyeo青瓷分为釉层和基材层,研磨釉层和基材层的样品; 用银箔胶带包裹20-50毫克的地面样品,尺寸为一英寸; 分别从Mossbauer光谱设备的釉料层和基材层的包装样品中获取Mossbauer光谱; 根据异构体的运动,用线和四重分析Mossbauer光谱,并将分析的Mossbauer光谱分类为亚铁离子和铁离子; 通过将分级的亚铁离子和铁离子的相对速率分类的釉层和基材层划分为基体材料层的Fe离子速率乘以Fe离子速率并绘制相同 在一个高丽青瓷样品上使用亚铁离子和铁离子的两个点指数的图表; 通过将亚铁离子的点指数除以三价铁离子的点指数并用数字填充相对减少值来计算相对减少值; 并通过相似的减少条件对相对减少值进行分类,将相对减少值分类为相似组。 (附图标记)(AA)将挖出的Groyeo青瓷分为釉层和基材层并研磨釉层和基材层的样品的步骤; (BB)通过用银箔带包围样品,将尺寸为一英寸的20-50mg的研磨样品包装在一起; (CC)分别从Mossbauer光谱设备从釉料层和基材层的包装样品中获取Mossbauer光谱的步骤; (DD)以线和四倍分析莫斯鲍尔光谱的步骤,并根据异构体的运动将分析的莫斯鲍尔光谱分解成亚铁离子和铁离子; (EE)通过划分釉层和基材层来计算和制造釉层的Fe离子速率与基材层的图,其被分类为分类的亚铁离子和铁离子的相对速率 ; (FF)使用亚铁离子和铁离子相对于一个高丽青瓷样品的两个点指数在图上绘制相同的步骤; (GG)通过将亚铁离子的点指数除以三价铁离子的点指数并用数字填充该图上的相对减少值来计算相对减少值的步骤; (HH)通过相似的减少条件对相对减少值进行分类,将相对减少值分类为相似组的步骤

Patent Agency Ranking