Abstract:
본 발명은 기재 및 상기 기재 상에 이동성이 감소된 금속입자가 결합된 지지형 지질 이중층(supported lipid bilayer; SLB)을 포함하는 인공세포막(artificial cell membrane); 상기 인공세포막을 포함하는 분자 간의 상호작용을 확인하기 위한 분석장치 또는 키트에 있어서, 하나의 분자는 상기 인공세포막에 결합된 이동성이 감소된 금속입자의 표면에 결합되고, 다른 분자는 낮은 결합가로 지질에 결합된 이동성이 큰 금속입자의 표면에 결합된 것이 특징인 분석장치; 상기 분석장치를 이용하여, 분자 간의 상호작용을 확인하는 방법; 플라즈몬 산란 측정에 의한 상기 인공세포막을 포함하는 표적 물질의 정량 또는 정성적 분석용 키트; 및 상이한 플라즈몬 산란 파장 및/또는 지지형 지질 이중층 상에서의 이동도를 갖는 복수의 금속입자를 이용하여 복수의 표적 물질을 검출할 수 있는 다중분석키트에 관한 것이다. 본 발명의 금속입자가 결합된 지지형 지질 이중층을 포함하는 인공세포막은 금속입자 상에 결합된 리간드 수를 조절함으로써 지질 상에서 금속입자의 이동성을 조절할 수 있으며, 따라서 이동성이 다른 두 가지 금속입자 상에 상호작용을 분석하고자 하는 표적 분자를 각각 도입하여 상기 인공세포막 상에 도입함으로써 플라즈몬 산란에 의해 금속입자의 움직임을 모니터링하여 표적 분자 간의 상호작용을 분석할 수 있다. 이때, 본 발명의 인공세포막과 플라즈몬 산란 파장 또는 지질 상에서 이동성이 상이한 복수의 입자를 사용하여 복수의 표적 물질을 동시에 검출 및 정량하는 다중분석이 가능하다.
Abstract:
The present invention relates to a structure including an assembly of nanoparticles and polynucleotides and a method for producing same. In particular, the structure comprises: an assembly that is bonded to nanoparticles and large-scale DNA (the large-scale DNA has a bp length of 1,000-1,000,000, one side terminal bonded to the nanoparticles, and the other side terminal having a functional group that can be bonded to other nanoparticles or the outer surface); and a supported lipid bilayer (SLB) bonded to the assembly. The nanoparticle-large DNA assembly according to the present invention has a stable adhering force and linearized large DNA that is rolled in a coil shape by means of an external force (that is formed through an electric field or a fluid flow) so as to be widely used for DNA mapping or other DNA-related protein reaction analyses.
Abstract:
PURPOSE: A nanoparticle-nucleic acid complex and a method for linearizing target nucleic acids using the same are provided to enable effectively sequencing and mapping of the target nucleic acids. CONSTITUTION: A nanoparticle-nucleic acid complex contains nanoparticles(100) in which two or more protection sequence parts(110) and a probe sequence part(120) are fixed. The protection sequence parts are fixed at the nanoparticfles at one end and have a single strand nucleic acid containing a random base sequence. The probe sequence part is fixed at the nanoparticles at one end and has a single strand nucleic acid containing a base sequenc ewhic complementarily binds to a first region(131) of connection sequence part(130). The protection sequence part further contains a spacer. The spacer binds on the surface of the nanoparticles at one end and binds the single stand nucleic acid of the production sequene at the other end.