Abstract:
본원은 광섬유의 소정 영역의 코어에 탄소나노구조체 층이 형성되어 있는 광섬유, 상기 광섬유를 포함하는 광섬유 화학 센서, 및 상기 광섬유 코어에 탄소나노구조체 층을 형성하는 방법에 관한 것으로서, 탄소나노구조체 층 표면의 굴절률이 가스 및 입자 등의 흡착에 대하여 민감하게 반응하는 것을 이용함으로써 상기 광섬유의 일부 코어 영역에 탄소나노구조체 층이 형성된 광섬유를 기체, 액체, 및 입자 등에 대한 센서에 응용할 수 있다.
Abstract:
The present invention relates to an optical fiber including graphene oxide and reduced graphen oxide, a method for manufacturing the optical fiber, and a method for manufacturing gas sensor including the same. According to the present invention includes a grapheme oxide (GO) layer and the reduced graphen oxide (rGO) layer. [Reference numerals] (AA) Optical fiber;(BB,LL) GO coating;(CC,HH,MM) Reflected light;(DD,II,NN) Transmitted light;(EE,JJ,OO) Steam;(FF,KK,QQ) Incident light;(GG,PP) rGO coating
Abstract:
PURPOSE: A surface plasmon resonance sensor including a prism with a metallic carbon nano-structure layer and a manufacturing method thereof are provided to secure the operation of a surface plasmon resonance sensor with a fixed wavelength because a metallic graphene layer is evenly deposited on one side of a prism. CONSTITUTION: A surface plasmon resonance sensor comprises a light source part(10), a sensing part(20), and a light receiving part(30). The sensing part comprises a prism(200) in which a metallic carbon nano-structure layer(300) is formed on one side and collects the light reflected off the prism. The metallic carbon nano-structure layer is selected from the group consiting of graphene, graphite, carbon nano-tube, and their combination.
Abstract:
실시간 방사선 검출을 위한 방사선 검출 장치는 방사선 검출 박막, 상기 방사선 검출 박막에 대하여 광을 방출하는 광섬유, 상기 방사선 검출 박막에서 반사된 광의 강도 정보를 검출하는 광 검출부, 상기 광 검출부에서 검출한 광의 강도 정보에 기초하여 반사율을 산출하는 반사율 산출부 및 상기 반사율에 기초하여 방사선 검출 결과를 출력하는 제어부를 포함한다.
Abstract:
본 발명은 광섬유의 소정 영역의 코어에 탄소나노구조체 층이 형성되어 있는 광섬유, 상기 광섬유를 포함하는 광섬유 화학 센서, 및 상기 광섬유 코어에 탄소나노구조체 층을 형성하는 방법에 관한 것으로서, 탄소나노구조체 층 표면의 굴절률이 가스 및 입자 등의 흡착에 대하여 민감하게 반응하는 것을 이용함으로써 상기 광섬유의 일부 코어 영역에 탄소나노구조체 층이 형성된 광섬유를 기체, 액체, 및 입자 등에 대한 센서에 응용할 수 있다. 광섬유, 탄소나노구조체, 그래핀, 센서
Abstract:
PURPOSE: An optical fiber with a carbon nano structure layer, an optical fiber chemical sensor, and a method for forming the carbon nano structure layer on an optical fiber core are provided to improve sensitivity. CONSTITUTION: A carbon nano structure layer(21) is formed on a core of an optical fiber and is selected from a group of graphene, graphite oxide, or carbon nano tube. A core(11) of the optical fiber is selected from a group of glass, plastic, or polymer.
Abstract:
PURPOSE: A device and a method for detecting radiation on a real-time basis are provided to measure a change in a state of a radiation detection thin film when the same is exposed to the radiation based on the extent of reflection. CONSTITUTION: A device(10) for detecting radiation on a real-time basis comprises a radiation detection thin film(100), a first optical fiber, an optical detecting unit(170), a reflectance calculating unit(180), and a control unit(140). The first optical fiber emits lights to the radiation detection thin film. The optical detecting unit detects the information of the intensity of light reflected by the radiation detecting thin film. The reflectance calculating unit calculates the reflectance based on the information of the intensity of light detected by the optical detection unit. The control unit outputs a result of detecting the radiation based on the reflectance. [Reference numerals] (140) Control unit; (150) Branch unit; (160) Optical source; (170) Optical detecting unit; (172) Spectrometer; (180) Reflectance calculating unit
Abstract:
PURPOSE: A surface plasmon resonance sensor using a metal graffin, a manufacturing method thereof and a plasmon resonance system are provided to driven in a fixed wave length without a buffer layer by having a different cladding mode within a sensor. CONSTITUTION: A surface plasmon resonance sensor using a metal griffin comprises a metal graffin layer(140). The metal graffin layer is formed in the core(120) of the fixed region of an optical fiber(100) from in which a jacket and a cladding(130) are removed. The core of the optical fiber comprises one or more selected from the group consisting of the inorganic material, organic compound and their combination. The core of the fixed region of the optical fiber is exposed. The metal graffin layer is formed on the exposed core of the optical fiber.