Abstract:
본 발명은 계면활성제를 이용한 방사성이 향상된 탄소나노튜브 섬유의 제조방법 및 이에 의해 제조된 탄소나노튜브 섬유에 관한 것이다. 본 발명에 따른 탄소나노튜브 섬유의 제조방법은 탄소나노튜브 제조시에 계면활성제를 첨가하여, 계면활성제에 의해 촉매의 응집이 방해 및 지연됨으로써, 탄소나노튜브 섬유에 핵심적인 촉매의 크기가 줄어들고 분포가 균일하게 되어 탄소나노튜브 섬유의 강력과 전도도가 향상되고, 방사성도 증가하는 효과가 있다. 종래의 기술은 탄소나노튜브를 합성할 때 촉매가 되는 물질을 균일하게 뿌려주기 위하여 고압의 초임계 상태로 주입을 하여 탄소나노튜브 섬유를 제조해야 했으나, 본 발명에서는 분산제를 이용하므로 고압을 필요로 하는 초임계 상태에서의 주입이 필요 하지 않다.
Abstract:
The present invention relates to a method for manufacturing carbon nanotube fiber reinforced with carbon precursors and a manufacturing method thereof. The carbon nanotube fiber according to the present invention is carbonized by filling the inner empty space of the carbon nanotube fiber with carbon precursors and improves dynamic and thermal characteristics due to effective stress transmission, and contact resistance decreases and maintains the characteristics at high temperatures.
Abstract:
PURPOSE: A velvet type field emission device and a manufacturing method thereof are provided to control a distance of carbon nano-tubes by manufacturing the whole fabric by using carbon nano-tube fiber. CONSTITUTION: Velvet fabric which is woven with carbon nano-tube fiber is located on a plane which is not parallel to the traveling direction of an electron. Carbon nano-tube fiber leading end is formed by cutting a loop accomplishing the velvet fabric. The carbon nano-tube fiber leading end is parked on the plane as file shape. The electron is discharged from the carbon nano-tube fiber leading end. Fabric is manufactured with a velvet weaving method or a double textile weaving method.
Abstract:
본 발명은 탄소전구체로 보강된 탄소나노튜브섬유 및 이의 제조방법에 관한 것이다. 본 발명에 따른 탄소나노튜브섬유는 탄소나노튜브섬유의 내부 빈 공간이 탄소전구체로 채워져 탄화되어, 효과적인 응력전달과 접촉저항 감소로 인하여 역학적, 열적 특성이 향상되며 고온에서도 이러한 특성이 손상되지 않고 유지되는 효과가 있다.
Abstract:
The present invention relates to a manufacturing method of carbon nanotube fiber with enhanced spinnability using a surfactant, and carbon nanotube fiber manufactured by the same. According to the manufacturing method of carbon nanotube fiber, the surfactant is added during the carbon nanotube manufacturing process to inhibit and delay aggregation of a catalyst. Therefore, the size of the catalyst, a key element of the carbon nanotube fiber, is reduced and thus the catalyst is uniformly dispersed. Consequently, the strength, conductivity, and spinnability of the carbon nanotube fiber are increased. According to a conventional method, carbon nanotube fibers are manufactured by injecting, at a high-pressure supercritical state, a material serving as a catalyst in a process of synthesizing carbon nanotubes so as to uniformly spray the material; however, the present invention applies a dispersant to eliminate an injection procedure at the supercritical state that requires high-pressure.