-
公开(公告)号:WO2021085784A1
公开(公告)日:2021-05-06
申请号:PCT/KR2020/007403
申请日:2020-06-08
Applicant: 재단법인대구경북과학기술원
Abstract: 객체 검출 모델의 학습 방법 및 객체 검출 모델이 실행되는 객체 검출 장치가 개시된다. 객체 검출 모델의 학습 방법은 학습하고자 하는 타겟 이미지를 일정한 크기를 가진 복수의 셀들로 분할하는 단계; 상기 객체 검출 모듈에 포함된 복수의 콘볼루션 레이어(Convolution layer)들을 통해 상기 타겟 이미지로부터 상기 복수의 콘볼루션 레이어들 각각에 대응하는 서로 다른 해상도를 가진 인코딩 특징맵을 생성하는 단계; 상기 객체 검출 모듈에 포함된 단일의 디콘볼루션 레이어(Deconvolution layer)를 통해 상기 복수의 콘볼루션 레이어들 중 최후단에 위치한 제1 콘볼루션 레이어에 의해 생성된 저해상도의 인코딩 특징맵과 상기 제1 콘볼루션의 이전단에 위치한 제2 콘볼루션 레이어에 의해 생성된 고해상도의 인코딩 특징맵을 융합함으로써 디코딩 특징맵을 생성하는 단계; 및 상기 객체 검출 모듈에 포함된 객체 검출 레이어를 통해 상기 생성된 디코딩 특징맵을 이용하여 상기 복수의 셀들 각각에서 예측된 객체 정보를 검출하는 단계를 포함하고, 상기 단일의 디콘볼루션 레이어는 수용 영역(Receptive field)을 증가시키기 위한 콘볼루션 레이어가 추가될 수 있다.
-