Abstract:
PURPOSE: A manufacturing method of polymer electrolyte membrane for solid polymer type fuel cell including hydrophilicity intensifier, a polymer electrolyte membrane for the solid polymer type fuel cell manufactured thereby, a membrane electrode assembly including the same, and a solid polymer type fuel cell are provided to reduce contact resistance between electrode and electrolyte membrane and to enhance conductivity. CONSTITUTION: A manufacturing method of polymer electrolyte membrane for solid polymer type fuel cell including hydrophilicity intensifier comprises the following steps: preparing transition metal doped hydrophilicity intensifier; preparing a polyelectrolyte solution for the solid polymer type fuel cell; uniformly mixing the transition metal doped hydrophilicity intensifier with the membranous polymers electrolyte solution; and forming a polymer electrolyte membrane in the transition metal doped hydrophilicity intensifier is uniformly dispersed.
Abstract:
PURPOSE: A manufacturing method of a natural dye solution is provided to provide a natural dye solution capable of manufacturing various natural dye-sensitive solar batteries for requiring growth of plants. CONSTITUTION: A manufacturing method of a natural dye solution comprises a step of preparing a natural dye powder (400); a step of forming a natural dye solution by mixing the natural dye powder, pH controller, and solvent; and a step of forming a natural dye solution by mixing the natural dye powder, pH controller, and solvent. The natural dye solution has a wavelength selectivity for promoting or inhibiting growth of plant. The natural dye is Carthami Flos xanthophyll, lac color, alive side, red cabbage pigment, gardenia red, gardenia blue, rdenia Yellow, cacao, cochineal, henna, or monascus red. The manufacturing method is provided to control wavelength range by using the pH controller.
Abstract:
염료감응 태양전지용 천연염료 용액 제조방법 및 이를 이용한 천연염료 감응 태양전지 제조방법을 제공한다. 염료감응 태양전지용 천연염료 용액 제조방법은 천연염료 분말을 준비하는 단계; 및 상기 천연염료 분말, pH 조절제 및 용매를 혼합하여 천연염료 용액을 형성하는 단계를 포함하고, 상기 천연염료 용액은 식물 생장의 촉진 또는 억제를 위한 파장 선택성을 갖는 것을 특징으로 하는 염료감응 태양전지용 천연염료 용액 제조방법을 포함한다. 따라서, 흡수파장대가 다른 천연염료 용액을 조합하여 제조된 파장선택용 칵테일 용액을 적용하여 식물의 생장에 필요한 파장대에 적합한 천연염료 감응 태양전지를 다양하게 제조할 수 있다.
Abstract:
본 발명은 전이금속을 포함하는 광촉매 제조방법, 및 그를 포함하는 염료감응형 태양전지 제조방법에 관한 것으로, 기존 상용화되어 시판되고 있는 P-25(Degussa, Germaby) 광촉매(SiO2, TiO2)에 질산화은(AgNO3)을 함침법을 이용하여 담지한 후 초음파를 통해 입자간 분산을 유도하고, 초음파 분산이 끝난 광촉매 슬러지는 탈수, 건조, 및 소성의 과정을 걸쳐 Ag를 담지한 최종의 광촉매 입자를 제조할 수 있다. 그리고, 광촉매를 입자를 파쇄하여 패이스트를 제조한 후 FTO 유리판에 코팅한 후 소성과정을 걸쳐 염료를 흡착함으로써 태양전지의 광전극을 제조할 수 있다. 본 발명에 의하면, 광촉매에 전이금속을 포함함으로써 염료감응형 태양전지의 에너지 변환효율을 향상시킬 수 있다. 전이금속, 질산화은(AgNO3), 광촉매, 염료감응형 태양전지
Abstract:
A dye-sensitized solar cell and a manufacturing method thereof are provided to enhance distribution property and adsorption property of a dye by using a binder through the chemical reforming of natural plant oil and a fatty acid. A dye-sensitized solar cell is made up of a counter electrode which includes a light transparence substance(10), a conductive light transparence layer(20) and a platinum layer(30), a photoelectrode and an electrolyte solution(50). A mixture layer is composed of a transition metal oxide(40) and a natural binder. Wherein, the natural binder is formed out of one selected from a group consisting of a fatty acid modified epoxy acrylate, acrylated epoxidized soybean oil and maleated acrylated epoxidized soybean oil.
Abstract:
PURPOSE: Photo-catalyst, a method for manufacturing the same, the semiconductor electrode paste composition of a dye-sensitized solar cell including the same, the dye-sensitized solar cell using the same, a method for manufacturing the dye-sensitized solar cell are provided to carry dye and transition metals in the photo-catalyst and improve the energy conversion efficiency of the dye-sensitized solar cell. CONSTITUTION: Photo-catalyst includes nanoparticle titanium dioxide. At least one maleinized acryl epoxy soybean oilcopolymer(MAESO) molecule is absorbed in the nanoparticle titanium dioxide. The weight ratio of the MAESO and titanium dioxide is 0.25~1:5. The surface area of the photo-catalyst is between 100 and 120 m^2/g. The MAESO is dissolved in an organic solvent to obtain an MAESO solution(S10). The nanoparticle titanium dioxide is mixed with the solution(S12). Sludgy is obtained by centrifuging the mixed solution(S15). The sludge is sintered and pulverized(S17). The organic solvent is acethylaceton.