Abstract:
PURPOSE: A manufacturing method of a nano structure metal carbide and the and nano structure metal carbide manufactured from thereof are provided to perform a pressing molding and a sintering operation at high temperature in several minutes by heating nano powder with a heat generated from an inducing current or an impulse current. CONSTITUTION: A manufacturing method of a nano structure metal carbide comprises the following steps: nano pulverizing the metal carbide powder to make a nano particle size by ball milling; pressing molding and sintering the powder from the nano pulverizing step while heating the powder with a heat generated from an electric current; and cooling the pressing molded and sintered nano structure at room temperature when the contraction length does not change by blocking the electric current. The metal carbide powder is selected from the group consisting of titanium carbide, tungsten carbide, silicon carbide, tantalium carbide, vanadium carbide, and niobium carbide.
Abstract:
본 발명은 티타늄과 수산화인회석의 혼합물을 소결 및 침출하여 세포와의 결합력을 높인 표면 다공성의 티타늄-수산화인회석 복합체 및 이의 제조방법에 관한 것이다. 본 발명에 의한 표면 다공성 티타늄-수산화인회석 복합체는 뼈와 유사한 저 탄성계수를 가지며, 또한 HA코팅 시 HA코팅 층이 박리되는 문제를 해소하여 우수한 생체적합성을 가진다. 본 발명의 복합체는 3차원적으로 연결된 마크로 사이즈의 기공이 다수 형성되어 있어 효율적인 세포 증식 및 고정, 세포괴사를 방지할 수 있다.
Abstract:
본 발명은 나노구조의 금속탄화물과 탄소나노튜브가 혼합된 복합재료 및 이의 제조방법에 관한 것이다. 본 발명의 나노구조 금속탄화물-탄소나노튜브 복합재료는, 나노구조의 금속탄화물과 탄소나노튜브가 혼합되어 소결된 것을 특징으로 한다. 또한 본 발명의 나노구조 금속탄화물-탄소나노튜브 복합재료의 제조방법은, 나노크기의 금속탄화물 분말과 탄소나노튜브를 혼합하는 단계; 혼합된 분말에 전류를 가하여 상기 혼합분말 자체에 열을 발생시킴과 동시에 혼합분말을 가압 성형하여 소결하는 단계; 및 상기 소결되는 재료의 수축길이 변화가 발생되지 않는 시점에서 전류 및 압력을 제거하고 냉각하는 단계를 포함하는 것이 특징이다. 이에 따르면, 내부식성이 뛰어난 나노구조 금속탄화물-탄소나노튜브 복합재료를 2~5분의 단시간에 제조할 수 있기 때문에, 종래에 비하여 금속탄화물의 결정립이 성장하는 것을 방지할 수 있어서 기계적 성질이 뛰어난 초경재료를 제조할 수 있다. 금속탄화물, 탄소나노튜브, 나노구조, 경도, 파괴인성, 내부식성
Abstract:
PURPOSE: A method for manufacturing a titanium bio complex body with bio ceramic is provided to have excellent properties such as biocompatibility, corrosion resistance, hardness, and density by sintering a mixture after sintering the mixture. CONSTITUTION: A method for manufacturing a titanium bio complex body is composed of a mixing step of mixing each powder of titanium, niobium, and molybdenum with calcium pyrophosphate, a milling step of milling the Ti-Nb-Mo-CPP mixture, and a sintering step of sintering the Ti-Nb-Mo-CPP mixture. Sizes of each powder are 30μm of the titanium, 40μm of the niobium, 15μm of the molybdenum, and 3μm of the calcium pyrophosphate. A bio medical device includes the titanium bio complex body and is used for dental implants or orthopedic implants. [Reference numerals] (AA) Upper punch; (BB) Spacer; (CC) Die; (DD) Specimen; (EE) Punch; (FF) Vacuum chamber; (GG) Lower punch; (HH) Controller; (II) Generator
Abstract:
PURPOSE: A fuel cell separator is provided to have mechanical properties similar to austenite-based stainless steel by using a metal material which is formed by minimally using expensive metal elements such as nickel, chrome, etc., and to have long-term stable durability while ensuring the performance of a fuel cell. CONSTITUTION: A fuel cell separator comprises a stainless steel sheet material, and a passivation layer which comprises titanium-aluminum-chrome nitride formed on the sheet material. The passivation layer consists of 10-13 wt% of titanium, 10-13 wt% of aluminum, 50-54 wt% of chrome, and 20-30 wt% of nitrogen. The thickness of the passivation layer is 3-30. The passivation layer is obtained by depositing titanium, aluminum and chrome specimen on the stainless steel sheet material through an ion plasma sputtering method in a nitrogen gas atmosphere.
Abstract:
PURPOSE: A porous titanium-hydroxyapatite(ha) composite and a manufacturing method thereof are provided to prevent cell death and to enable efficient cell proliferation and cell fixation by sintering and leaching titanium and hydroxyapatite. CONSTITUTION: A manufacturing method of a porous titanium-hydroxyapatite(ha) composite comprises the following steps: mixing titanium (Ti) powder and hydroxyapatite powder; forming a composite by sintering the mixed powder; and adding the composite to a leaching solution and forming a pore by eluting the hydroxyapatite. A particle size of the titanium powder is 5-100 micro meters and the hydroxyapatite powder is 5-100 nano meters. 10-50 weight% of the hydroxyapatite powder is mixed in the titanium powder. The sintering step is processed under 10-200 MPa, at 800-1200 deg. Celsius for 2-10 minutes. The porous titanium-hydroxyapatite composite comprises micro sized pores which are connected as 3D.
Abstract:
PURPOSE: A nano-structure metal carbide-carbon nano-tube composite material and a method for preparing the same are provided to improve the anticorrosion property of a super hard material by mixing and sintering nano structure metal carbide and carbon nano-tube. CONSTITUTION: A nano-structure metal carbide-carbon nano-tube composite material is mixed-sintered body of nano structure metal carbide and carbon nano-tube. 1 to 50 vol% of carbon nano-tube is mixed. The metal carbide is one selected from a group including titanium carbide and tungsten carbide. The nano-structure metal carbide powder and the carbon nano-tube are mixed. A current is applied to mixed powder in order to generate heat in the mixed powder. The mixed powder is pressure-molded to be sintered. A cooling process is followed.