Abstract:
본 발명은, 전극이 형성된 센서기판 및 상기 전극이 형성된 센서기판 상에 금속산화물 나노입자가 분산된 용액을 분사하여 형성된 박층의 센서소재를 포함하는 가스센서 및 그의 제조방법에 관한 것이다. 본 발명에 의한 가스센서는 센서소재가 미세한 나노입자들로 구성된 금속산화물 박층으로 형성되어, 매우 큰 금속산화물 비표면적을 가지며 다공성이므로, ppb 레벨의 높은 감도(Sensitivity)와 우수한 반응속도를 구현한다. 또한, 본 발명의 가스센서는 상온에서 제조하는 것이 가능하며, 분사 시간의 조절을 통해 센서소재의 두께를 쉽게 조절할 수 있어, 박막 또는 후막 가스센서로 제조하는 것이 용이하다.
Abstract:
본 발명은 LaOCl-NiO 산화물, LaOCl-NiO-LaNiO 3 산화물 , 또는 LaNiO 3 산화물을 갖는 1차원 구조의 La계 산화물 나노섬유 및 그 제조방법에 관한 것이다. 본 발명의 La계 산화물 나노섬유는 Cl을 포함하고 있는 La 전구체와 Ni 전구체를 고분자와 함께 섞어서 전기방사를 한 후, 고온에서 열처리하여 열처리 온도에 따라서 LaOCl-NiO 산화물, LaOCl-NiO-LaNiO 3 산화물 , 또는 LaNiO 3 산화물을 성분을 가지는 나노섬유를 제조한다. 650℃ 이하의 저온에서 안정한 LaOCl-NiO 산화물 나노섬유는 P-type 특성을 갖는 금속산화물 반도체로서, 선택성이 매우 우수한 유기화합물 가스센서에 이용할 수 있다. 열처리 온도가 850℃ 이상에서 얻어지는 LaNiO 3 산화물은 전도 특성이 매우 우수하여 우수한 전도성 특성이 요구되는 기판 및 촉매제, 전도선 등에 응용이 가능하다.
Abstract:
PURPOSE: An LA based oxide nanofiber, a manufacturing method thereof, p type gas sensor using thereof, an electrical conductor, and a nanonrod are provided to obtain fibril structure and semiconductor structure with improved electric conductivity. CONSTITUTION: An LA based oxide nanofiber comprises LaOCl-NiO mixture oxide which consists of fine nano particles, LaOCl-NiO-LaNiO3 mixture oxide, or LaNiO3 oxide components. The fine nano particle has particle size of 2-500 nano meters. The LaOCl and NiO of the LaOCl-NiO mixture oxide nanofiber have characteristics of P-type semiconductor chip. The LaNiO3 oxide has acubic perovskite structure. A manufacturing method of the La based oxide nanofiber comprises the following steps: mixing La precursor which includes Cl and Ni precursor and forming a spinning solution which contains precursor; forming the metal oxide precursor-polymer composite nanofiber from the spinning solution by using an electrospinning apparatus; and heat-treating in order to eliminate the polymer of the composite nanofiber; and obtaining LaOCl-NiO mixture oxide, LaOCl-NiO-LaNiO3 mixture oxide, or LaNiO3 oxide according to the thermal annealing temperature.
Abstract:
The present specification relates to an optical fiber oxygen sensing device which includes a header unit forming interferential waves based on a principle of an optical fiber fabry-perot interferometer to lights emitted by a light source; and an optical spectrum analyzer which determines the existence of oxygen base on the existence of a change in a spectrum cycle of the interference waves. The header unit includes a sensing material of which a variable refraction rate is changed by being joined with oxygen. The spectrum cycle of the interferential waves is changed according to the variable refraction rate of the sensing material. The oxygen sensing device includes an optical fiber providing a moving passage or an optical waveguide of lights emitted by the light source by suing the total reflection of the lights, a polymer which function as two films of the optical fabry-perot interferometer by being spread on a tip end of the optical fiber or the optical wave guide; the sensing material which forms the interferential waves based on the principle of the optical fiber fabry-perot interferometer in respect to the lights emitted by the light source and incident via the optical fiber. The variable refractive rate of the sensing material is changed, and the spectrum cycle of the interferential waves are changed by the change in the variable refraction rate of the sensing material.
Abstract:
금속 산화물 패턴의 형성 방법 및 이를 이용한 박막 트랜지스터 제조 방법에 관한 것으로, 적어도 하나의 금속 산화물 전구체 또는 금속 산화물 나노 입자; 및 용매를 포함하는 잉크 조성물을 준비하는 단계; 상기 잉크 조성물을 기판 상에 토출시켜 상기 기판 상에 패턴을 형성시키는 단계; 및 상기 형성된 패턴을 광소결하는 단계;를 포함하고, 상기 금속 산화물 전구체는 이온 형태인 것인 금속 산화물 패턴의 형성 방법을 제공할 수 있다.
Abstract:
PURPOSE: An yttrium oxide-containing dielectric ink composition is provided to improve dielectric constant by uniformly dispersing yttrium oxide(Y2O3) with high dielectric constant and low leakage current value. CONSTITUTION: An yttrium oxide-containing dielectric ink composition has one morphology of a rice grain, thin film and rod. The yttrium oxide has a uniform particle size of 50 - 500 nm. The yttrium oxide is surface-modified and crosslinked with a coupling agent. The coupling agent is selected from the group consisting of polymelamine-co-formaldehyde, 3-APTS(aminopropyltriethoxy-silane), INAAT(isopropyltris N-aminoethyl-aminoethyl titanate) and PMAA(polymethaccrylic acid).
Abstract:
PURPOSE: A surface coating apparatus is provided to arrange and coat spherical particles and to enable the coating of large-sized monolayer or multilayer with only small amount of a mixture. CONSTITUTION: A surface coating apparatus includes upper and lower plates(10,20) and a suspension for coating which is injected between the upper and lower plates, wherein the suspension is applied to at least one side facing the upper and lower plates by moving at least one of the upper and lower plates. The suspension comprises microparticles(30), a solvent for dispersing the microparticles, and a dispersion catalyst.
Abstract:
PURPOSE: A negative electrode for a secondary battery is provided to increase specific surface area, to minimize the volume change during a repetitive charge and discharge reaction, and to improve adhesive property with a current collector, thereby improving charge-discharge efficiency, output and cycleability. CONSTITUTION: A method for manufacturing a negative electrode for a secondary battery comprises the steps of: applying a solution mixed with a polymer and a precursor containing Ca ion, Cu ion and Ti ion at the same time, on a negative electrode current collector to form a composite fiber mixed with the precursor and polymer; thermally pressurizing or compressing the composite fiber; and removing the polymer from the composite fiber by heat-treating the thermally pressurized or compressed composite fiber, and obtaining a porous thin film of Ca_(X/16)Cu_((16-X)/16)TiO_3(X=1~15).
Abstract:
A dielectric thin film and a thin film transistor using the film are provided to improve dielectric strength, to allow the thin film transistor to be driven stably even at low voltage and to ensure the optical transparency for applying to a transparent element. A dielectric thin film is manufactured in a process comprising steps of: mixing BaCO3 powder, SrCO3 powder and TiO2 powder for the composition ((Ba1-xSrx)TiO3, x= 0.1-0.9); preparing target by adding 0.5-50wt% of acceptor to the mixture of BaCO3 powder, SrCO3 powder and TiO2 powder; and sputtering the target on substrate at ambient temperature while having a substrate in sputtering device in order to form dielectric thin film on the substrate, wherein the acceptor is selected from Mg, Mn, Ni and Fe, or is at least two selected from Mg, Mn, Ni and Fe.