-
公开(公告)号:KR100689636B1
公开(公告)日:2007-03-08
申请号:KR1020050128145
申请日:2005-12-22
Applicant: 한국에너지기술연구원
IPC: C04B35/565 , C04B35/76
Abstract: A method of fabricating carbon fiber reinforced silicon carbide composites is provided to produce the composites which have improved porosity, density and bending strength, low thermal expansion, high thermal conductivity and high fracture toughness, by adding thermo-curable resin and ceramic powder to the carbon fiber, and melting and infiltrating metal silicon into a carbide form of the carbon fiber precursor. The method includes a slurry coating step that prepares a slurry of thermo-curable resin and ceramic powder and applies the slurry to carbon fiber to form a precursor; a forming step that forms the precursor into a shaped precursor a hardening step that cures the shaped precursor in multiple steps at 40 to 70deg.C for 24 hours then at 80 to 150deg.C for 24 hours; a precursor carbonization step that heats the hardened precursor up to 900 to 1100deg.C at a heating rate of 0.5 to 2deg.C/min under vacuum or nitrogen atmosphere; and a liquid silicon infiltration step that heats metal silicon up to 1500 to 1700deg.C at a heating rate of 0.5deg.C/min and filtrates the molten metal silicon into the carbonized material.
Abstract translation: 提供一种制造碳纤维增强碳化硅复合材料的方法,通过将热固性树脂和陶瓷粉末添加到碳中来制造具有改善的孔隙率,密度和弯曲强度,低热膨胀性,高导热性和高断裂韧性的复合材料 纤维,并且将金属硅熔融并渗透为碳纤维前体的碳化物形式。 该方法包括浆料涂布步骤,其制备热固性树脂和陶瓷粉末的浆料并将该浆料施加到碳纤维以形成前体; 形成步骤,其将前体形成成形前体;硬化步骤,其在40至70℃下以多个步骤固化成形前体24小时,然后在80至150℃下固化24小时; 在真空或氮气氛中以0.5至2℃/分钟的加热速率将硬化的前体加热至900-1100℃的前体碳化步骤; 以及液体硅渗透步骤,其以0.5deg.C / min的加热速率将金属硅加热至1500至1700℃,并将熔融金属硅滤出至碳化材料中。
-
2.
公开(公告)号:KR100893896B1
公开(公告)日:2009-04-20
申请号:KR1020070073529
申请日:2007-07-23
Applicant: 한국에너지기술연구원
Abstract: 본 발명은, 압출성형 기술과 반응소결 기술을 적용한 세라믹 전열판 및 이를 포함하는 세라믹 열교환기를 제공하여 열교환 효율을 높여 에너지를 절감하고, 컴팩트한 구조의 세라믹 전열판 및 이를 포함하는 세라믹 열교환기를 제공하여 설치면적을 최소화함으로써 설비비용을 절감하기 위한 것이다.
이를 위해, 본 발명은, 탄화규소(SiC) 분말과 카본 블랙(cabon black) 분말과 바인더 및 물을 혼합한 후 압출성형한 성형품에 금속 규소(Si)를 반응소결시켜 제조되고, 그 내부에 길이방향을 따라 배기가스 또는 공기와 같은 유체가 유동되는 유로가 형성되며, 그 단면이 실질적으로 사각 형상으로 형성된 것을 특징으로 하는 열교환기용 세라믹 전열판 및 이를 포함하는 컴팩트형 세라믹 열교환기를 제공한다.
컴팩트형 세라믹 열교환기, 열교환기용 세라믹 전열판, 압출성형, 반응소결, 유로, 배기가스 유동층, 냉각공기 유동층-
3.
公开(公告)号:KR100705587B1
公开(公告)日:2007-04-09
申请号:KR1020060069853
申请日:2006-07-25
Applicant: 한국에너지기술연구원
Abstract: 본 발명은 일명 물유리로 불리우는 규산나트륨(Na
2 SiO
3 ㆍnH
2 O)을 이용하여 에너지 및 환경 소재, 초단열재, 음파지연재, 촉매담지체 및 차세대 반도체의 고속회로용 층간 절연물질로의 응용될 수 있는 소수성의 실리카 에어로젤의 제조방법에 관한 것으로, 규산나트륨을 저농도의 수용액으로 하여 이온교환수지를 통과시켜 양이온이 제거된 실리카졸을 함유하는 수용액으로 제조한 다음, 전기 실리카졸을 함유하는 수용액에 1몰농도의 암모니아수(NH
4 OH)를 이용하여 pH를 4.5로 조정하고, pH가 조정된 실리카졸 내부의 기포가 제거되도록 방치한 다음, 용기를 밀봉하고 50℃ ∼ 60℃로 유지하면서 1시간 내지 2시간 동안 젤화를 진행시켜 습윤젤을 제조하고, 제조된 습윤젤을 95% 알콜이 담겨져 있는 용기로 옮겨 50℃ ∼ 60℃에서 24시간 숙성시킨 다음, 다시 50℃ ∼ 60℃로 유지되는 소수성 용매 속에서 24시간동안 침적시켜 습윤젤에 함유되어있는 알콜을 완전히 제거하기 위한 세척공정을 거친 다음, 세척이 완료된 습윤젤을 트리메틸클로르실란과 소수성용매로 이루어진 표면개질용 용액에 침적하여 상온에서 2일 ∼ 5일간 용매치환 및 표면개질과정을 거치는 것을 특징으로 하는 에어로젤의 제조방법을 제공한다.
에어로젤, 물유리, 소수성용매, 표면개질Abstract translation: 本发明涉及硅酸钠(Na
-
4.
公开(公告)号:KR1020090010434A
公开(公告)日:2009-01-30
申请号:KR1020070073529
申请日:2007-07-23
Applicant: 한국에너지기술연구원
Abstract: Ceramic heating plate for the heat exchanger and compact ceramic heat exchanger including the same are provided that the extrusion molding technology and reaction sintering technology are applied and the heat exchange efficiency is enhanced. A ceramics heating plate for the heat exchanger comprises an exhaust gas flowing layer(110) raising the flow channel in which the exhaust gas of the high temperature is flown, and a cold air flowing layer(120) raising the flow channel in which the cold air is flown. The cold air flowing layer is laminated on the top of the exhaust gas flowing layer. The flow of exhaust gas layer and cold air flowing layer are successively by turns laminated to the multi-layer vertically.
Abstract translation: 提供了用于热交换器的陶瓷加热板和包括其的紧凑型陶瓷热交换器,其中应用了挤出成型技术和反应烧结技术,并提高了热交换效率。 用于热交换器的陶瓷加热板包括:排出气体流动层(110),其提升高温废气流动的流动通道;以及冷空气流动层(120),其使冷气流通 空中飞行 冷气流层层叠在废气流动层的顶部。 排气层和冷空气流动层的流动依次层叠到多层垂直上。
-
公开(公告)号:KR1020020067257A
公开(公告)日:2002-08-22
申请号:KR1020010007749
申请日:2001-02-16
Applicant: 한국에너지기술연구원
IPC: C04B35/573
CPC classification number: C04B35/573 , C04B35/563 , C04B35/62695 , C04B35/64 , C04B2235/3821 , C04B2235/3826
Abstract: PURPOSE: A method for manufacturing silicon carbide-boron carbide composites by liquid phase reaction sintering is provided which can compensate strength/hardness reduction due to free silicone in silicon carbide-boron carbide composite produced by liquid phase reaction sintering. CONSTITUTION: The manufacturing method of silicon carbide-boron carbide composites by liquid phase reaction sintering includes the steps of (i) adding 5-40 wt.% of boron carbide(B4C) to an admixture comprising 80-95 wt.% silicon carbide and 5-20 wt.% carbon powder followed by mixing, wherein the silicon carbide is composed of coarse particle and fine particle in a ratio of 7:3, and the carbon powder is carbon black having mean particle size of less than 1μm; (ii) adding 1-2 wt.% of organic binder to the mixture obtained in the first step followed by granulating above mixture with a sieve having 50-100 mesh size; (iii) pressing the granulated mixture by uniaxial pressing at 300-500Kg/cm¬2; and (iv) sintering process. The sintering process is characterized in that above formed mixture is heated up to 600 deg.C at a temperature rising rate of 1 to 2 deg.C/min under decompressed atmosphere of 10¬-1 to 10¬-2 torr and then holding the temperature for 1 hour; sequentially it is heated to temperature ranges of 1,550 to 1,600°C at a temperature rising rate of 5 deg.C/min and then holding the temperature for a certain period of time; and finally it is heated up to 1,700°C.
Abstract translation: 目的:提供一种通过液相反应烧结制造碳化硅 - 碳化硼复合材料的方法,其可以补偿由液相反应烧结制备的碳化硅 - 碳化硼复合材料中的游离硅氧烷的强度/硬度降低。 构成:通过液相反应烧结制造碳化硅 - 碳化硼复合材料的方法包括以下步骤:(i)将5-40重量%的碳化硼(B4C)加入到包含80-95重量%的碳化硅和 5-20重量%的碳粉末,然后混合,其中碳化硅由比例为7:3的粗颗粒和细颗粒组成,碳粉是平均粒度小于1μm的炭黑; (ii)在第一步骤中获得的混合物中加入1-2重量%的有机粘合剂,然后用具有50-100目尺寸的筛子将上述混合物造粒; (iii)以300-500Kg / cm 2的单轴压制压制造粒混合物; 和(iv)烧结工艺。 烧结过程的特征在于,将上述形成的混合物在10-1-10 -2托的减压气氛下以1至2℃/ min的升温速率加热至600℃,然后将 温度1小时; 依次加热至1550〜1600℃的温度范围,升温速度为5℃/分钟,然后保温一定时间; 最后加热到1700℃。
-
公开(公告)号:KR100299099B1
公开(公告)日:2001-09-13
申请号:KR1019990015659
申请日:1999-04-30
Applicant: 한국에너지기술연구원
IPC: C04B35/565 , C04B35/573
Abstract: 본발명은액상반응소결(Liquid Phase Reaction Sintering)법과탄화규소 (SiC) 세라믹스를이용하여화학펌프, 마그네틱펌프및 송풍기에사용하는세라믹밀봉재(Ceramics Seal)의제조방법에관한것이다. 본발명은 95∼85 중량의탄화규소에 5∼15 중량의탄소를기본조성으로하여유기바인더를성형보조제로첨가하고이들을혼합하여실온에서 800℃까지 1∼2℃/분의느린속도로승온시켜성형체에결함이생성시키지않도록하고바인더를제거하기위하여열처리한후, 1,600∼1,700℃의온도범위에서 0.5∼1시간동안반응소결하여탄화규소세라믹밀봉재를제조한다. 본발명은기공이없이치밀하며, C-ring 강도 400 MPa 이상, 경도 2,000 kg/mm이상을갖는탄화규소세라믹밀봉재소결체의제조하는것을목적으로한다.
-
公开(公告)号:KR1020000067656A
公开(公告)日:2000-11-25
申请号:KR1019990015659
申请日:1999-04-30
Applicant: 한국에너지기술연구원
IPC: C04B35/565 , C04B35/573
CPC classification number: C04B35/64 , B28B1/265 , C04B35/573 , C04B35/632 , C04B2235/422 , C04B2235/656
Abstract: PURPOSE: A manufacturing method of SiC ceramic seal by liquid phase reaction sintering is provided, which gives excellent abrasion-resistance, hardness and heat-resistance. CONSTITUTION: The manufacturing method of SiC ceramic seal comprises the steps of: preparing 85-95 wt.% of SiC powders containing coarse and fine powders and 5-15 wt.% of C powders containing graphite and carbon black powders and then vibration pot milling for 30 min.; mixing with 1-2 wt.% (based on the weight of mixed SiC+C powders) of an organic binder such as carboxymethyl cellulose (CMC) or polyvinyl pyrollidone (PVP); forming with 300-500 kg/cm¬2 by uniaxial pressing; heat treating at 800°C for 1 hour; sintering it up to 1550-1600°C elevating by 5°C/min and then maintaining the temperature for 1 hour. The sintered ceramic seal having more than 400 MPa of C-ring strength and more than 2000 kg/mm2 of hardness is used for chemical pumps, magnetic pumps and fans.
Abstract translation: 目的:提供通过液相反应烧结制造SiC陶瓷密封的方法,具有优异的耐磨性,硬度和耐热性。 构成:SiC陶瓷密封件的制造方法包括以下步骤:制备85-95重量%的含有粗粉末和细粉末的SiC粉末和5-15重量%的含石墨和炭黑粉末的C粉末,然后振动锅铣 30分钟。 与有机粘合剂如羧甲基纤维素(CMC)或聚乙烯基吡咯烷酮(PVP)的1-2重量%(基于混合SiC + C粉末的重量)混合; 通过单轴压制成型为300-500kg / cm 2; 在800℃下热处理1小时; 将其烧结至1550-1600℃,升高5℃/ min,然后保持温度1小时。 具有超过400MPa的C环强度和大于2000kg / mm 2的硬度的烧结陶瓷密封件用于化学泵,磁力泵和风扇。
-
公开(公告)号:KR100419778B1
公开(公告)日:2004-02-21
申请号:KR1020010007749
申请日:2001-02-16
Applicant: 한국에너지기술연구원
IPC: C04B35/573
Abstract: PURPOSE: A method for manufacturing silicon carbide-boron carbide composites by liquid phase reaction sintering is provided which can compensate strength/hardness reduction due to free silicone in silicon carbide-boron carbide composite produced by liquid phase reaction sintering. CONSTITUTION: The manufacturing method of silicon carbide-boron carbide composites by liquid phase reaction sintering includes the steps of (i) adding 5-40 wt.% of boron carbide(B4C) to an admixture comprising 80-95 wt.% silicon carbide and 5-20 wt.% carbon powder followed by mixing, wherein the silicon carbide is composed of coarse particle and fine particle in a ratio of 7:3, and the carbon powder is carbon black having mean particle size of less than 1μm; (ii) adding 1-2 wt.% of organic binder to the mixture obtained in the first step followed by granulating above mixture with a sieve having 50-100 mesh size; (iii) pressing the granulated mixture by uniaxial pressing at 300-500Kg/cm¬2; and (iv) sintering process. The sintering process is characterized in that above formed mixture is heated up to 600 deg.C at a temperature rising rate of 1 to 2 deg.C/min under decompressed atmosphere of 10¬-1 to 10¬-2 torr and then holding the temperature for 1 hour; sequentially it is heated to temperature ranges of 1,550 to 1,600°C at a temperature rising rate of 5 deg.C/min and then holding the temperature for a certain period of time; and finally it is heated up to 1,700°C.
Abstract translation: 目的:提供一种通过液相反应烧结制造碳化硅 - 碳化硼复合材料的方法,其可以补偿由液相反应烧结制备的碳化硅 - 碳化硼复合材料中由游离硅氧烷引起的强度/硬度降低。 构成:通过液相反应烧结的碳化硅 - 碳化硼复合材料的制造方法包括以下步骤:(i)将5-40重量%的碳化硼(B 4 C)加入到包含80-95重量%的碳化硅和 5-20重量%的碳粉,然后混合,其中碳化硅由粗颗粒和细颗粒以7:3的比例组成,碳粉是平均粒径小于1μm的炭黑; 米; (ii)将1-2重量%的有机粘合剂加入到第一步获得的混合物中,随后用50-100目尺寸的筛将上述混合物造粒; (iii)通过在300-500Kg / cm 2和2下单轴压制造粒的混合物; 和(iv)烧结过程。 该烧结过程的特征在于,在减压10〜10℃〜2乇的气氛中,将上述形成的混合物以1〜2℃/分钟的升温速度升温至600℃后, 温度1小时; 依次以5℃/分钟的升温速度将其加热至1550至1600℃的温度范围,然后保持该温度一段时间; 最后加热到1700℃。
-
-
-
-
-
-
-