Abstract:
An optical backhaul network for a wireless broadband service is provided. The optical backhaul network for a wireless broadband service includes: a plurality of optical network units for outputting an uplink optical signal having a multiplexed wavelength; an optical line termination for outputting a downlink optical signal of a single mode in order to transmit the downlink optical signal to the plurality of the optical network units in a broadcasting form; and a plurality of remote nodes for outputting a part of the downlink optical signal to the plurality of the optical network units and for outputting the uplink optical signal to the optical line termination. Therefore, one center and a plurality of access points can be efficiently connected.
Abstract:
본 발명은 광파장에 비의존적인 WDM 수동형 광가입자망을 실현하기 위해서 요구되는 네트워크 구성방식 및 상하향 광통신 장치에 관한 것으로, 파장다중화 수동형 광가입자망 시스템에 있어서, 적어도 하나 이상의 씨앗광원(SL)을 이용하여 파장간격 및 중심파장이 조정된 씨앗광을 생성하는 씨앗광 생성부, 상기 씨앗광생성부로부터 상기 씨앗광을 전달받아 광가입자망의 가입자에게 하향광신호를 전송하고, 상기 가입자로부터 전송된 상향광신호를 수신하는 광선로 종단부(OLT) 및 상기 광선로 종단부로부터 수신된 하향광신호를 상향데이터를 포함하도록 변조한 상향광신호를 전송하는 광네트워크 종단부(ONU)로 구성되어, 소광비를 충분히 높일수 있게 해줌으로써 하향전송의 품질 및 신뢰도를 향상시킬 수 있고, 입력된 하향 광신호를 반도체 광증폭기 내에서 충분히 평탄화시킴으로써 상향전송의 품질 및 신뢰도를 향상시킬 수 있다. WDM-PON, 광선로 종단 시스템 (OLT), 광네트워크 종단 시스템 (ONU), 파장 비의존 (Wavelength Independent), 다파장 광원 (MWLS), 광대역 광원 (BLS), 광파장 재사용 (Wavelength Reuse), 광신호 평탄화 (Optical Signal Flatting), 선행전류주입 (FFCI)
Abstract:
본 발명은 별도의 온도 제어 부품의 사용 없이 외부 온도에 무관하게 출력 광파워와 출력 파장이 일정하게 유지될 수 있는 온도 무의존성 외부공진레이저를 제공한다. 그 외부공진레이저는 반도체 증폭기; 브라그 격자(Bragg Grating)가 형성된 코어 및 상기 코어를 감싸는 클래드를 구비한 광섬유; 및 광섬유를 페룰(ferrule)에 고정하고 음의 열광학 계수를 갖는 열경화성 폴리머;를 포함하고, 브라그 격자가 형성된 부분의 코어를 감싸는 클래드의 두께가 다른 부분의 클래드보다 얇게 형성되며, 상기 열경화성 폴리머가 상기 클래드를 감싸고 있다. 본 발명의 외부공진레이저는 별도의 온도 제어 장치를 부착할 필요가 없어서, 소형 및 저가형으로 제작할 수 있기 때문에, 경제적인 WDM 광가입자망 설계에 있어서, DWDM 시스템 광원으로 유용하게 사용될 수 있다. 외부온도 무의존 광원, 외부공진레이저, thin-film 필터, 브라그 격자
Abstract:
An RSOA reusing a downlink optical signal by dynamic current injection and a driving apparatus thereof are provided to adjust dynamically a current injected to the RSOA according to the size of an input optical signal and reduce the residual ER(Extinction Ratio) of the optical signal, thereby reducing the power penalty of uplink transmission and improving transmission quality. An RSOA(Reflective Semiconductor Optical Amplifier)(600) includes a reflecting surface and an optical amplifying semiconductor. The reflecting surface reflects an input optical signal. The optical amplifying semiconductor is positioned in one side of the reflecting surface. The polarity of a first signal is reverse to the polarity of the input optical signal. A second signal modulates the input optical signal reflected from the reflecting surface into an output optical signal. The first and second signals are combined and injected to the optical amplifying semiconductor.
Abstract:
A wavelength tunable external cavity laser is provided to have stable optical coupling efficiency and oscillation characteristics by coupling a wavelength tunable waveguide Bragg-grating reflection filter and a semiconductor laser diode through an active alignment method using an additional substrate. A semiconductor laser diode(200) outputs a multi-wavelength optical signal and is mounted on a first substrate. A wavelength tunable reflection filter(103) is mounted on a second substrate, and outputs a single-wavelength optical signal using resonance of a diffraction grating, and changes the wavelength of the single-wavelength optical signal by changing a refractive index of the diffraction grating. The first substrate is a 3-5 compound semiconductor substrate. The second substrate is a silicon substrate, and the tunable reflection filter is formed with a polymer material with a negative thermo-optic coefficient and has a waveguide structure.
Abstract:
A feed-forward current driver and an SOA(Semiconductor Optical Amplifier) for reusing a downstream optical signal through dynamic current injection are provided to reduce the ER(Extinction Ratio) of an inputted optical signal by dynamically adjusting the current injected to an RSOA(Reflective SOA) according to amplitude of the optical signal. Downstream optical signals from a telephone office are split through an optical coupler(601). Some of the downstream optical signals are inputted to an RSOA(600), and some of them are inputted to a dPD(data Photo Diode)(602). The light inputted to the dPD(602) is changed into current signals. A TIA(Transimpedance Amplifier)(603) amplifies the current signals and converts them into voltage signals. The voltage signals are inputted to an LA(Limiting Amplifier)(604), and they are amplified again. Some of output signals of the LA(604) are inputted to the first RF delay(605). Output signals of the RF delay(605) are inputted to an AND gate(606). Output signals of the AND gate(606) are changed into current signals through the first LDD(LD Driver)(607). Some inputted upstream data signals are inputted to the first LDD(607), and they are changed into current signals. The current signals are combined with bias current. Output signals of the first and second LDDs(607,609) are combined through a signal combiner(610), and the combined signal is injected into an RSOA(600).
Abstract:
A hybrid type integrated optical device has a semiconductor laser mounted on a planar waveguide platform by flip-chip bonding. The optical device comprises a semiconductor laser and a planar waveguide platform. The semiconductor laser includes a first structure, which has an active region and a light emission surface formed on at least one side surface of the first structure, and a second structure, which is formed below the first structure and has upper surfaces exposed at the light emission surface of the first structure and/or to a surface opposite to the light emitting surface. The planar waveguide platform includes a substrate, a lower clad layer, a core layer, and an upper clad layer, being sequentially stacked on the substrate. The semiconductor laser is flip-chip bonded on the substrate, such that the exposed upper surfaces of the second structure contact the upper surface of the upper clad layer.
Abstract:
본 발명은 씨앗 광원으로부터 수신한 씨앗광을 파장 역다중화 하는 제1 파장 다중화 장치, 및 적어도 하나의 가입자측 단말 장치로부터 상기 파장 역다중화된 씨앗광을 이용하여 생성된 상향 광신호를 수신하여 파장 역다중화 하는 제2 파장 다중화 장치를 포함하는 국사용 광장치(OLT)를 제안한다. 파장분할 다중화, 수동형 광가입자망, 씨앗 광원
Abstract:
PURPOSE: A seed optical module for passive optical networks is provided to apply an optical line terminal more efficiently by minimizing the loss of optical power during the process of splitting the spectrum. CONSTITUTION: A light amplifier(110) amplifies seed light. An optical wavelength filter(120) transmits broadband light, which is outputted in the opposite direction of the seed light, in periodic frequency intervals. A reflecting mirror(130) reflects spectrum-split light towards an optical wavelength filter with the optical wavelength filter. A gain flattening filter is arranged between the optical wavelength filter and the reflecting mirror. The gain flattening filter flattens the intensity of the signals which are outputted as seed light.