Abstract:
본 발명은 기판의 재사용이 가능한 태양 전지 및 그 제조 방법에 관한 것이다. 태양 전지는 i) 상호 이격되어 배치되고 일방향으로 뻗은 복수의 나노 구조체들, ii) 복수의 나노 구조체들 중 하나 이상의 나노 구조체의 일단을 덮는 제1 도전체층, iii) 제1 도전체층과 이격되어 위치하고, 나노 구조체의 타단을 덮는 제2 도전체층, 및 iv) 제1 도전체층 및 제2 도전체층의 사이에 위치한 유전체층을 포함한다.
Abstract:
본 발명은 태양 전지 및 그 제조 방법에 관한 것이다. 태양 전지는 i) 기판, ii) 기판 위에 위치하고, 상호 이격되어 배열된 복수의 제1 나노 구조체들, 및 iii) 기판 위에 위치하고, 복수의 제1 나노 구조체들과 이격되어 배열된 복수의 제2 나노 구조체들을 포함한다. 복수의 제1 나노 구조체들 중 하나의 제1 나노 구조체를 기판의 판면에 평행한 방향으로 자른 단면의 평균 직경은 복수의 제2 나노 구조체들 중 하나의 제2 나노 구조체를 기판의 판면에 평행한 방향으로 자른 단면의 평균 직경보다 크다.
Abstract:
본 발명은 태양 전지 및 그 제조 방법에 관한 것이다. 태양 전지는, i) 제1 도전층, ii) 제1 도전층 위에 위치하고, 제1 도전층의 판면에 교차하는 방향으로 뻗으며, 상호 이격된 복수의 나노 구조체들, iii) 제1 도전층 위에 위치하고, 복수의 나노 구조체들 사이의 공간에 충전된 수지층, iv) 수지층 위에 위치하고, 복수의 나노 구조체들을 덮는 하나 이상의 반도체층, 및 v) 반도체층을 덮고, 제1 도전층의 광투과율보다 낮은 광투과율을 가지는 제2 도전층을 포함한다.
Abstract:
PURPOSE: A solar cell and a manufacturing method thereof are provided to use a metal electrode having a higher flexibility than a transparent conductive film, thereby preventing deterioration. CONSTITUTION: A first metal electrode(10) touches a second doped region of nanostructures(30). The first metal electrode is separately formed in the upper end of a second doped region. A second metal electrode(20) is separated from the first metal electrode. The second metal electrode covers the lower part of a first doped region. A dielectric layer(40) is positioned between the first metal electrode and the second metal electrode.
Abstract:
A nano wire manufacturing method is provided to grow nano wire more easily, to simplify the process for producing nano wire and to obtain higher electric current driving force by using silicide catalyst. A manufacturing method of nano wire comprises steps of: (S1) forming alloy thin film layer on silicone substrate; (S2) depositing aluminum thin film on the alloy thin film layer; (S3) forming porous nano template by means of the deposited aluminum thin film; (S4) forming titanium pilar under the pores of the template; (S5) precipitating copper from the alloy thin film layer as copper silicide by reaction with silicone which is diffused on aluminum oxidization film after diffusion toward the lower side of the pores of the template through the titanium pilar; (S6) growing nano wire on using the precipitated copper silicide catalyst; and (S7) removing the porous nano template for the preparation of semiconductor device. Further, the alloy thin film layer is one of cupper-titanium alloy, platinum-titanium alloy and cobalt-titanium alloy.
Abstract:
A method for fabricating a semiconductor nano wire is provided to more effectively grow a semiconductor nano wire by using Au silicide as a catalyst in growing a semiconductor nano wire by a VLS(vapor liquid solid) growth method. A Ti thin film, an Au thin film and an Al thin film are sequentially formed on a semiconductor substrate(S1). The Al thin film is anodized to fabricate a porous nano template having nano pores(S2). Si is injected into the Au thin film exposed to the lower portion of the pores of the porous nano template to transform the Au thin film into Au silicide(S3). A semiconductor nano wire is grown to be vertical to the semiconductor substrate by a VLS growth method in which the Au silicide is used as a catalyst(S4). The porous nano template is eliminated(S5). The Ti thin film can have a thickness of 500~1000 Š. The Au thin film can have a thickness of 5~50 Š. The Al thin film can have a thickness of 8000~10000 Š.
Abstract:
PURPOSE: A solar cell and a method for manufacturing the same are provided to implement excellent solar cell having high energy efficiency by forming nano structures having different structure. CONSTITUTION: A plurality of first nano-structure(20) are arranged is formed on a substrate(10) and are separated from each other. A plurality of second nanostructures(30) are arranged on the substrate and are separated from the first nano-structure. One of the first nano-structures has an average diameter of a cutting section in the substrate is larger than that of one of the second nano-structures.
Abstract:
PURPOSE: A photovoltaic cell including a semiconductor rod, a method for managing the same, and a photovoltaic cell-thermoelectric device integrated module are provided to improve energy conversion efficiency by generating electricity using the optical energy and the heat energy of the photovoltaic cell. CONSTITUTION: A semiconductor rod(13) is projected over a substrate(10). The semiconductor rod includes a plurality of compound thin films with different compositions. Central parts of the compound thin films form a first conductive semiconductor core(13a). End parts of the compound thin films form a second conductive semiconductor shell(13b). A first PV electrode(19) is electrically connected with the first conductive semiconductor core. A second PV electrode(18) is electrically connected with the second conductive semiconductor shell.
Abstract:
PURPOSE: An unified module of a photovoltaic cell- a thermoelectric device, a method for fabricating the same are provided to improve the energy conversion efficiency by generating power through usage of light energy and heat energy. CONSTITUTION: A semiconductor ingot(13) comprises a first semiconductor core(13a) and a second semiconductor shell(13b). A first PV electrode(19) electrically connects to the first semiconductor core. A second PV electrode(18) electrically connects to the second semiconductor shell. A Seebeck device(SB) is located in a lower part of a solar battery. The Seebeck device comprises a P-type semiconductor ingot(35b) and an N type semiconductor ingot(35a).