Abstract:
본 발명은 연료전지용 팔라듐-백금 코어-쉘 촉매의 제조방법에 관한 것으로, 보다 상세하게는 팔라듐 코어 위에 에피택시얼(epitaxial)하게 성장한 백금 쉘 나노입자를 합성하고 이를 탄소지지체에 담지하여 수소연료전지용 팔라듐-백금 코어-쉘 촉매를 제조함으로써 균일한 크기로 대량 생산이 가능하며, 고가의 금속 사용량을 감소시켜 제조단가를 낮출 수 있고, 우수한 전기촉매적 활성과 내구성 가지는 고효율의 수소연료전지 분야에 적용할 수 있는 연료전지용 팔라듐-백금 코어-쉘 촉매의 제조방법에 관한 것이다.
Abstract:
The present invention relates to a method for manufacturing palladium-platinum core-shell catalysts for fuel cells and, more specifically, to a method for manufacturing palladium-platinum core-shell catalysts for fuel cells which synthesizes platinum shell nanoparticles grown to be epitaxial on a palladium core, dips the platinum shell nanoparticles in carbon supporters and manufactures palladium-platinum core-shell catalysts for hydrogen fuel cells. Accordingly, the present invention is able to mass-product the palladium-platinum core-shell catalysts, is able to lower manufacturing costs by reducing metal consumption and is able to be applied to high efficiency hydrogen fuel cell fields requiring excellent electrocatalyst activity and durability.
Abstract:
본 발명은 코어-쉘 타입의 담지촉매 제조방법에 관한 것으로, 더욱 상세하게는 내외부가 상이한 코어-쉘(core-shell) 구조의 합금입자를 복합 탄소담지체 상에 담지하여 제조하는 코어-쉘 타입의 담지촉매 제조방법에 관한 것이다. 이를 위하여 본 발명은, 1) 안정화제를 이용하여 용매에 탄소담지체를 용해 분산시키는 단계; 2) 상기 1)단계의 용액에 코어 전구체를 용해시킨 후, 강환원제를 첨가하여 코어 전구체의 전이금속들을 탄소담지체의 표면에 환원 담지시키는 단계; 3) 상기 2)단계의 전이금속이 담지된 탄소담지체를 여과 및 세척하는 단계; 4) 상기 3)단계의 여과세척된 탄소담지체를 쉘 전구체 수용액에 재분산하는 단계; 5) 상기 4)단계의 용액에 60~80℃의 온도에서 약환원제를 첨가하여 쉘 전구체의 금속이온을 기합성된 전이금속 위에 선택적으로 환원시켜 석출되게 하는 단계;를 포함하는 것을 특징으로 하는 코어-쉘 타입의 담지촉매 제조방법을 제공한다.
Abstract:
PURPOSE: A method for manufacturing a core-shell type supported catalyst is provided to replace platinum with low cost of metal for reducing the cost of production. CONSTITUTION: A method for manufacturing a core-shell type supported catalyst comprises the following steps. A stabilizer allows a carbon supported element to be dissolved in a solution. A precursor of the core is dissolved in the solution before the transition metals of the core precursors with a strong reducing agent are supported on the surface of the carbon supported element. The carbon supported element with transition metals are filtered and washed. The carbon supported element is sprayed in the shell precursor solution. At a temperature of 60~80°C, a weak reducing agent is put into the solution and a metal ion of the shell precursor is reduced and obtained on the previously compounded transition metal. [Reference numerals] (AA) Core manufacturing step; (BB) Manufacturing carbon supported element using stabilizer; (CC) Dissolving/dispersing core precursor; (DD) Strong reduction; (EE) Filtering/washing; (FF) Shell manufacturing step; (GG) Dissolving/dispersing catalyst core powder in ethanol; (HH) Adding Pt salt; (II) Weak reduction; (JJ) Filtering/washing; (KK) Drying
Abstract:
본 발명은 표면개질제를 사용하여 결정성 탄소의 친수성을 증가시키는 방법 및 이를 이용한 백금 담지 촉매의 제조방법에 관한 발명으로, 더욱 자세하게 설명하면 결정성 탄소 표면과 표면재질제 사이에 π-π 상호작용(interaction)을 형성시켜 발수성을 띄는 결정성 탄소에 친수성을 증가시키는 방법과 상기 친수성이 증가된 결정성 탄소에 백금을 담지시켜 촉매를 제조하는 것을 특징으로 한다. 본 발명의 결정성 탄소의 표면에 친수성을 증가시키는 방법에 의하면 결정성 탄소의 표면 구조 파괴없이 친수성을 증가시킬 수 있으며, 이를 이용한 백금 담지 촉매는 백금의 담지율, 분산성이 우수할 뿐만 아니라 촉매의 내구성 또한 우수하여 연료전지의 전극물질 제조에 유용하게 적용할 수 있다. 결정성 탄소, 표면개질제, 친수성
Abstract:
본 발명은 고분자 전해질막 연료전지용 전극, 연료전지, 그리고 고 비율 백금 담지 촉매 제조를 위한 담지체 및 이를 이용한 전극에 관련된 것이다. 본 발명에서는 연료전지 촉매에 있어서 기존의 활성탄소를 대신하여 일정범위의 섬유직경을 가지는 결정성 선형 탄소재와 특정분위기상에서 표면적을 향상시키는 동시에 결정성을 향상시킨 비선형의 입자를 복합적으로 이용한 촉매를 확보함으로써, 담지 촉매입자들의 활성점을 개선하고, 결정성 탄소재로부터 오는 내구성을 확보하는 고비율 백금담지촉매, 백금합금담지촉매 및 코어셀 담지촉매 및 이를 이용한 연료전지(PEM FC) 전극에 사용되는 촉매의 제조방법을 제공한다. 여기서, 선형의 결정성 탄소소재(carbon nano-fiber)를 Ni, Fe, Mn 등의 산화물을 촉매로 하여 불활성 분위기에서 하이드로카본류의 기상을 통과시켜 고온에서 일정범위의 섬경을 갖는 섬유형태로 성장시킨 것으로, 열처리에 의하여 결정성을 향상시키게 되며, 비선형의 탄소재의 경우 기종 상용화 되어 있는 아세틸렌블랙(acetylene black)을 고온에서 수증기를 이용하여 표면적을 확대하는 동시에 결정성을 향상시킨 공정에 의하여 고표면적 높은 내산화성의 지니는 양질의 소재로 개선한 것을 의미하는 것이다. 따라서, 본 발명에서는 위와 같이 제조된 결정성 탄소 담지체를 이용한 폴리오 공정을 통해 연료전지에 사용되는 고 비율 백금 담지 촉매 제조와 높은 성능의 연료전지 제조기술을 제공한다.
Abstract:
PURPOSE: A method for manufacturing alloy catalyst based on conductive polymer protective coating is provided to improve dispersity by suppressing the size growth of catalytic particles based on the carbonization of conductive polymer. CONSTITUTION: A carbon immersed platinum catalyst is prepared. The surface of the platinum catalyst is coated with conductive polymer. Transition metal salt is immersed to the coated catalyst. The transition metal salt immersed catalyst is thermally treated. The carbon is one selected from carbon nano-tubes, carbon nano-fiber, carbon nano-coils, and carbon nano-cages. The conductive polymer is polypyrrole or polyaniline.
Abstract:
PURPOSE: A producing method of a high rate platinum-supported catalyst for a fuel cell is provided to improve the yield of platinum by using a crystalline type of carbon carrier. CONSTITUTION: A producing method of a high rate platinum-supported catalyst for a fuel cell comprises the following steps: mixing ethylene glycol with NaOH, a platinum precursor, and carbon; reducing the platinum precursor by oxidizing the ethylene glycol, by refluxing the mixed solution in 140~180deg C; controlling the pH for carrying platinum, by inducing the mutual attraction between the platinum and a carrier; adding and additive for improving the carrying yield of the platinum; and removing unnecessary organic compounds by heat processing and washing after collecting the catalyst.
Abstract:
본 발명은 전도성 고분자 보호코팅을 이용한 합금 촉매의 제조방법에 관한 것으로서, 더욱 상세하게는 탄소에 담지된 백금 촉매를 제조하는 단계; 상기 백금 촉매의 표면을 전도성 고분자로 코팅하는 단계; 상기 코팅된 촉매에 전이금속 염을 담지하는 단계; 및 상기 전이금속 염이 담지된 촉매를 열처리하는 단계;를 포함하는 합금 촉매의 제조방법에 관한 것이다. 또한 탄소에 담지된 백금-전이금속 촉매를 제조하는 단계; 상기 백금-전이금속 촉매의 표면을 전도성 고분자로 코팅하는 단계; 및 상기 코팅된 촉매를 열처리하는 단계;를 포함하는 합금 촉매의 제조방법에 관한 것이다. 본 발명에 따른 합금 촉매의 제조방법에 의하면 열처리 공정을 통해 촉매의 합금도를 높이면서도, 전도성 고분자의 탄화에 의해 촉매입자 크기 성장이 억제되어 우수한 분산도를 가진 합금 촉매를 제조할 수 있으며, 제조된 촉매는 연료전지용 전극 등으로 유용하게 적용할 수 있다.
Abstract:
PURPOSE: A manufacturing method of fuel cell catalyst is provided to improve capacity and dispersity of catalyst particles through surface magnification treatment and crystallization treatment, thereby manufacturing a fuel cell catalyst with high performance and high durability suitable as a carrier of the fuel cell catalyst. CONSTITUTION: A manufacturing method of a fuel-cell catalyst comprises: a step heat-treating linear crystalline carbon support(200) in inert gas atmosphere; a step of heat-treating spherical crystalline carbon support(100); a step of dispersing the different carbon supports respectively; a step of forming a slurry by mixing the different supports; and a step of supporting platinum or a platinum catalyst by deoxidizing platinum precursor or platinum alloy precursor by putting NaOH, platinum precursor, or platinum alloy preursor into the mixed carbon supports and refluxing the same at 140-180 °C.