Abstract:
본 발명의 구리 나노 입자의 제조방법 및 내산화성 구리 나노 입자는 용매, 고분자, 및 유기산을 포함하는 제1용액을 준비하고 상기 제1용액을 교반하여 제1교반용액을 제조하는 용액제조단계, 상기 제1교반용액, 구리전구체, 및 제1환원제를 혼합하여 제2반응용액을 제조하는 반응단계, 상기 제2반응용액에 제2환원제를 혼합하고 제3반응용액을 제조하는 제조단계, 그리고 상기 제3반응용액에 포함된 구리 나노 입자를 분리하여 회수하는 회수단계를 포함하여 상온 및 공기분위기의 조건 하에서 반응이 이루어지면서도 매우 간단한 공정으로 구리 나노 입자의 제조가 가능하고 수계용매를 처음 적용시킨 친환경적인 방식으로 구리 나노 입자의 대량 생산이 용액 혼합만으로도 가능하도록 한 구리 나노 입자의 제조방법에 대한 것이다. 특히, 본 발명에 따른 구리 나노 입자는 상온, 공기 중에 보관하여도 3 개월 이상 산화되지 않은 상태로 보관할 수 있을 정도로 내산화성이 우수한 것일 수 있다.
Abstract:
본 발명은 발전부의 영구자석과 코일이 직렬배치된 자성유체를 이용한 고효율 연속발전 사이클 장치에 관한 것으로서, 보다 상세하게는 자성을 띄는 나노입자인 자성유체와, 상기 자성유체가 내부로 통과되어 순환되는 순환파이프와, 상기 순환파이프의 외측을 감싸도록 하여 상기 순환파이프의 길이방향을 따라 일정 간격으로 복수개 배치되는 영구자석과, 상기 순환파이프의 외측을 감싸도록 권선되되, 상기 순환파이프의 길이방향을 따라 상기 영구자석 사이에 복수개 배치되어 코일을 포함하는 유도발전부를 포함하여 제공된다. 상기와 같은 본 발명에 따르면, 발전코일과 영구자석의 배치를 순환관의 길이방향을 따라 직렬형태로 배치시켜 영구자석의 내경이 줄어들어 공간적 효율을 높이도록 하며, 순환관의 길이방향을 따라 다양한 직경의 코일을 복수개로 스택시켜 기포와 같은 비자성체의 다양한 길이를 가지는 패턴에 의해 상쇄되는 발전전압을 보완시켜 발전전압을 더욱 높이도록 하여 발전효율이 증대되는 효과가 있다.
Abstract:
본 발명은 i) 선형 업컨버전 형광 특성을 가지는 형광체를 준비하고; ii) 상기 형광체와 생체물질을 반응시켜서 형광체와 생체물질의 반응복합체를 형성하고; iii) 상기 반응복합체를, 상기 형광체의 최대발광파장보다 장파장의 광원으로 여기시키고; iv) 상기 여기된 반응복합체로부터 방출되는, 상기 여기광의 파장보다 단파장인 발광 신호를 탐지하여 측정하는; 단계를 포함하는, 선형 업컨버전 형광 특성을 가진 염료를 이용한 생체물질 검출 방법에 관한 것이다. 본 발명은 또한 선형 업컨버전 형광 특성을 가진 염료를 이용한 생체물질 검출 시스템 및 키트에 관한 것이다.
Abstract:
PURPOSE: A manufacturing method of a membrane electrode assembly for a fuel cell is provided to simplify the manufacturing process of the membrane electrode assembly, and to reduce the amount of a white pole catalyst. CONSTITUTION: A manufacturing method of a membrane electrode assembly for a fuel cell to form a nano surface structure on a polymer electrolyte membrane comprises the following steps: plasma treating the surface of the polymer electrolyte membrane(30) located in a chamber for plasma treating using PACVD method, while maintaining the pressure range of the chamber into 1.0×10^(-7)~2.75×10^(-3) pascals; forming a nanostructure(40) with hair patterns on the surface of the polymer electrolyte membrane by plasma treating for 1 seconds~60 minutes; and evaporating a catalyst on the surface of the polymer electrolyte membrane.
Abstract:
본 발명은 촉매층의 표면에 초소수성을 부여하기 위하여 촉매층의 표면 촉매담지체에 종횡비가 높은 나노패턴을 형성하여 표면적을 극대화하고, 그 표면 위에 소수성 박막을 코팅하여 소수성을 증가시킨 고분자 전해질 막-전극 접합체 및 그 제조방법에 관한 것이다. 이에 본 발명은, MEA를 구성하고 있는 촉매층의 표면 촉매담지체에 플라즈마 식각에 의한 고종횡비의 나노패턴을 형성하는 단계; 상기 촉매담지체에 형성된 나노패턴 위에 소수성 박막을 형성하는 단계;를 포함하는 고분자 전해질 막-전극 접합체의 제조방법을 제공한다.
Abstract:
PURPOSE: A hydrophobic porous material is provided to remarkably improve hydrophobic properties of surface of macroporous material and micro porous layer and to manufacture highly hydrophobic porous material with self-washing function. CONSTITUTION: A manufacturing method of improved hydrophobic porous material comprises: a step of providing a porous material with micron-scale surface roughness; a step of forming a surface of a micron-nano double structure by forming pores with forming pores of a sink shape or nanometer-scaled protrusions by plasma etching the surface of the pores ; a step of forming a hydrophobic thin film on the surface of micron-nano double structure. The pore is a sole macroporous support or consists of laminating microporous layer on a macro porous support.
Abstract:
The present invention relates to a polymer electrolyte membrane-electrode assembly with an enhanced hydrophobicity by maximizing the surface area by forming a nanopattern with a high aspect ratio on the catalytic carrier on the surface of a catalyst layer in order to supply ultra hydrophobicity to the surface of the catalyst layer, and by coating a hydrophobic thin film on the surface, and a manufacturing method thereof. The present invention provides a manufacturing method of a polymer electrolyte membrane-electrode assembly, which comprises a step of forming a nanopattern with a high aspect ratio by plasma-etching the catalyst carrier on the surface of a catalyst layer forming MEA; and a step of forming a hydrophobic thin film on the nanopattern formed on the catalyst carrier. [Reference numerals] (AA) Ultra hydrophobicity surface treatment (plasma etching + hydrophobic thin film coating); (BB) Catalyst layer; (CC,GG) Catalyst carrier; (DD) Catalyst; (EE,HH) Polymer electrolyte membrane; (FF) Hydrophobic thin film
Abstract:
본 발명은 물질전달성이 향상된 연료전지 및 그 제조 방법에 관한 것으로서, 마이크로미터 스케일의 거칠기를 갖는 기공체 표면을 나노 구조화를 위한 플라즈마 식각 처리하여 종횡비가 큰 나노 돌기를 형성함으로써 마이크로-나노 이중 구조(Micro-Nano Dual Structure)를 형성한 후 소수성 박막(Hydrophobic Thin Layer)을 코팅하여 소수성을 크게 증가시킨 고소수성의 기공체를 기체확산층으로 사용하는 연료전지 및 그 제조 방법에 관한 것이다. 상기한 고소수성의 기공체를 연료전지의 기체확산층으로 사용할 경우 연료전지 내 전기화학반응 생성물인 물을 보다 효율적으로 배출시켜 물 범람 문제를 감소시킬 수 있고, 반응기체인 수소 및 공기(산소)가 고분자 전해질막-전극 접합체(MEA)에 원활히 공급되도록 하여 연료전지의 셀 성능을 향상시킬 수 있게 된다.