Abstract:
A variety of support structures and build styles for use in Rapid Prototyping and Manufacturing systems are described wherein particular emphasis is given to Thermal Stereolithography, Fused Deposition Modeling, and Selective Deposition Modeling systems, and wherein a 3D modeling system is presented which uses multijet dispensing and a single material for both object and support formation.
Abstract:
A three-dimensional object is formed by selectively depositing successive layers (14) of build material from a print-head (9) having a plurality of orifices or nozzles (10(1)-10(96)), such as an ink-jet type of print-head. The print-head (9) is moved (X-Y control) relative to a support platform (15) in a series of scans in the X-direction offset from one another in the Y-direction and possibly overlapping. The orifices (10(1)-10(96)) extend transversely of the scan X-direction and may be set at an angle (α) to it to control the resolution perpendicular to the scan direction. The platform (15) is movable relative to the print-head in the Z-direction for forming each successive layer (14). The build material is a flowable material and may be a radiation-curable material, such as an ultra-violet curable photo-polymer. The data according to which each layer is formed may be manipulated according to a selected build style to determine the selective activation of the print-head orifices.
Abstract:
Methods of manipulating data in a thermal stereolithography apparatus, characterized in that the data represents a plurality of start/stop transitions to facilitate the computation of Boolean operations.
Abstract:
A stereolithography method and system for producing three-dimensional plastic objects by forming a plurality of thin layers of partially cured plastic material which are thin cross sections of the desired object. A layer of polymerizable resin is applied to a support surface and the excess is struck off, such as with a doctor blade, to form a smoothed layer. The smoothed layer is subjected to radiation in a predetermined pattern to form the cross-sectional layer into the desired shape. A plurality of layers are subsequently applied, leveled, then cured in the same manner to produce the desired three-dimensional object. Apparatus for measuring the level of the surface of a fluid is also provided. Variations in the level of fluid will be detected and may be used to drive a pump, diaphragm, or plunger in order to maintain the level of the fluid.
Abstract:
A stereolithography method and system for producing three-dimensional plastic objects by forming a plurality of thin layers of partially cured plastic material which are thin cross sections of the desired object. A layer of polymerizable resin is applied to a support surface and the excess is struck off, such as with a doctor blade, to form a smoothed layer. The smoothed layer is subjected to radiation in a predetermined pattern to form the cross-sectional layer into the desired shape. A plurality of layers are subsequently applied, leveled, then cured in the same manner to produce the desired three-dimensional object. Apparatus for measuring the level of the surface of a fluid is also provided. Variations in the level of fluid will be detected and may be used to drive a pump, diaphragm, or plunger in order to maintain the level of the fluid.
Abstract:
An improved stereolithographic apparatus and method is described. In one embodiment, the improvement comprises immersing at least a portion of a part in a volume of a liquid solvent in a vapor degreaser while subjecting the portion to ultrasonic agitation to substantially remove excess resin. Several examples of solvents are provided, including ethanol, and Freon TMS. In a second embodiment, the improvement comprises building the part on a layer of liquid resin supported by a volume of a dense, immiscible, and UV transparent intermediate liquid, and integratably immersing at least a portion of the built part in the intermediate liquid, and then either subjecting the immersed portion to ultrasonic agitation to substantially remove excess resin, or subjecting the immersed portion to UV light. Several examples of intermediate liquids are provided, including perfluorinated fluids, such as Fluorinert FC-40, and water-based salt solutions, such as solutions of magnesium sulfate or sodium chloride in water.
Abstract:
A three-dimensional object is formed by selectively depositing successive layers (14) of build material from a print-head (9) having a plurality of orifices or nozzles (10(1)-10(96)), such as an ink-jet type of print-head. The print-head (9) is moved (X-Y control) relative to a support platform (15) in a series of scans in the X-direction offset from one another in the Y-direction and possibly overlapping. The orifices (10(1)-10(96)) extend transversely of the scan X-direction and may be set at an angle (α) to it to control the resolution perpendicular to the scan direction. The platform (15) is movable relative to the print-head in the Z-direction for forming each successive layer (14). The build material is a flowable material and may be a radiation-curable material, such as an ultra-violet curable photo-polymer. The data according to which each layer is formed may be manipulated according to a selected build style to determine the selective activation of the print-head orifices.
Abstract:
Methods and apparatus for use in building three-dimensional objects on substantially a cross-sectional basis including methods and apparatus for forming successive layers using counter-rotating rollers, ink jet recoaters, spinning members which sling material, applicator bars that dispense material via a meniscus and/or independently dispensed streams, and also including methods and apparatus to determine a preferred region over which to form a layer and to check for building errors.
Abstract:
A stereolithography method and system for producing three-dimensional plastic objects by forming a plurality of thin layers of partially cured plastic material which are thin cross sections of the desired object. A layer of polymerizable resin is applied to a support surface and the excess is struck off, such as with a doctor blade, to form a smoothed layer. The smoothed layer is subjected to radiation in a predetermined pattern to form the cross-sectional layer into the desired shape. A plurality of layers are subsequently applied, leveled, then cured in the same manner to produce the desired three-dimensional object. Apparatus for measuring the level of the surface of a fluid is also provided. Variations in the level of fluid will be detected and may be used to drive a pump, diaphragm, or plunger in order to maintain the level of the fluid.
Abstract:
A stereolithography method and system for producing three-dimensional plastic objects by forming a plurality of thin layers of partially cured plastic material which are thin cross sections of the desired object. A layer of polymerizable resin is applied to a support surface and the excess is struck off, such as with a doctor blade, to form a smoothed layer. The smoothed layer is subjected to radiation in a predetermined pattern to form the cross-sectional layer into the desired shape. A plurality of layers are subsequently applied, leveled, then cured in the same manner to produce the desired three-dimensional object. Apparatus for measuring the level of the surface of a fluid is also provided. Variations in the level of fluid will be detected and may be used to drive a pump, diaphragm, or plunger in order to maintain the level of the fluid.