Abstract:
A custom device and method for fabricating the custom device includes marking a body with reference points and/or other indicators. Multiple images of the body from multiple angles are then obtained. The images are used to determine the contours of the body and the other markings are located and used to design a brace having an inner surface that corresponds to the contours of the body. The custom modular brace is fabricated as multiple pieces that are releasably coupled together and sequentially removed as the patient heals.
Abstract:
A bikini brace has an inner surface that corresponds to a digital representation of an injured limb. The bikini brace can wrap around a length of the limb in a helical manner. The body of the bikini brace may be a single piece structure that is fenestrated to provide air circulation to the injured limb.
Abstract:
A crutch includes a grip and a forearm support that are coupled to an elongated member that extends from the forearm support to the ground. The inner surface of the forearm support can correspond to a digital representation of a forearm of the patient and the outer surface of the hand grip can correspond to a digital representation of a palmar surface of the patient's hand in at least a partially closed position.
Abstract:
A computer provides a graphical user interface that allows designers to design string instruments. The dimensions and shape of the string instrument design can be altered using controls. The wind instrument design can be stored in a database and transmitted to a 3 dimensional printer which can fabricate the string instrument.
Abstract:
A spiral brace has an inner surface that corresponds to a digital representation of an injured limb. The spiral brace can wrap around a length of the limb in a helical manner. The body of the spiral brace may be a single piece structure that is fenestrated to provide air circulation to the injured limb.
Abstract:
A custom device and method for fabricating the custom device includes marking a body with reference points and/or other indicators. Multiple images of the body from multiple angles are then obtained. The images are used to determine the contours of the body and the other markings are located and used to design the custom device. The custom device can be fabricated as a single piece structure or in multiple pieces that are assembled to complete the custom device.
Abstract:
A waste removal and transfer assembly for a 3D printing system comprises a waste material remover and a waste material collector. The waste material remover comprises a movable waste removing element selectively movable into contact with a planerizer roller to remove 3D printing waste material from the planerizer roller. The waste material remover is coupled to translate with the planerizer roller and comprises an opening leading to a waste material receptacle configured to receive waste material and at least one port selectively operable to transfer waste material from the waste receptacle. The waste material collector has a receiving position that is stationary relative to the waste material remover. The waste material collector comprises an opening and a waste material storage recess to receive waste material transferred from the waste material remover via the at least one port and to store the received waste material for subsequent disposal.
Abstract:
A brace has a plurality of elongated beams that extend in parallel along the length of the brace. The adjacent beams are coupled to posts that extend around the circumference of the brace in a staggered pattern and hold the beams in place around the brace. The beams and posts define a plurality of elongated fenestrations. The configuration of the beams and fenestrations allow the brace to be strong in compression and bending and also provide elastic radial expansion.
Abstract:
A custom brace and method for fabricating the custom brace includes marking a body with reference points and/or other indicators. Multiple images of the body from multiple angles are then obtained. The images are used to determine the contours of the body and the other markings are located and used to design the custom brace. Fenestrations can be added to the brace design. The custom brace can be fabricated with the fenestrations as a single piece structure or in multiple pieces that are assembled to complete the custom device.
Abstract:
A conformable hand brace includes a support surface for supporting palm portion of a patient's hand and an adjustable mechanism that allows the cross section of the brace to be adjusted. The brace can be adjusted to provide a close fit as the geometry of the hand changes. The inventive system allows the conformable hand brace to be designed automatically by a computer based upon anatomical measurements.