Abstract:
A method of fabricating a structure includes disposing a liquid photoreactive composition on a substrate, exposing a portion of the liquid photoreactive composition to laser light of sufficient intensity and wavelength to cause polymerization via two-photon excitation of the two-photon sensitizer and polymerization of a portion of the liquid photoreactive composition thereby providing an exposed composition; and developing the exposed composition to provide the structure. The liquid composition includes: at least one cationically polymerizable polyepoxide; at least one compound comprising free-radically polymerizable groups; an effective amount of a two-photon photoinitiator system, wherein the weight ratio of component (a) to component (b) is from 25:75 to 75:25, inclusive. The two-photon photoinitiator system includes a two-photon sensitizer and an aromatic onium salt. The liquid photoreactive composition may contain less than about one percent by weight of organic solvent.
Abstract:
An exposure system includes a light source emitting a beam along an optical axis that is capable of inducing a multi-photon reaction in a resin. The exposure system further includes a resin undergoing multiphoton reaction, as well as an automated system including a monitor that measures at least one property of the beam selected from power, pulse length, shape, divergence, or position in a plane normal to the optical axis. The monitor generates at least one signal indicative of the property of the beam, and a sub-system adjusts the beam in response to the signal from the monitor.
Abstract:
A method of fabricating a structure includes disposing a liquid photoreactive composition on a substrate, exposing a portion of the liquid photoreactive composition to laser light of sufficient intensity and wavelength to cause polymerization via two-photon excitation of the two-photon sensitizer and polymerization of a portion of the liquid photoreactive composition thereby providing an exposed composition; and developing the exposed composition to provide the structure. The liquid composition includes: at least one cationically polymerizable polyepoxide; at least one compound comprising free-radically polymerizable groups; an effective amount of a two-photon photoinitiator system, wherein the weight ratio of component (a) to component (b) is from 25:75 to 75:25, inclusive. The two-photon photoinitiator system includes a two-photon sensitizer and an aromatic onium salt. The liquid photoreactive composition may contain less than about one percent by weight of organic solvent.
Abstract:
A semi-submersible microscope objective includes a microscope objective having a protective barrel with an optical inlet and optical outlet, and a protective element affixed to the microscope objective, sealing the optical exit but not the optical inlet. A transparent portion of the protective element is aligned with the optical exit. The protective element is separable from the microscope objective without damaging the microscope objective. Use of the semi-submersible microscope objective in a multiphoton imaging method is also disclosed.
Abstract:
The present disclosure relates to multiphoton absorption methods for curing a photocurable composition under conditions wherein negative contrast occurs. The photocurable composition includes a free-radically polymerizable compound. The method is applicable to fabrication of structures with micron-scale dimensions or less.
Abstract:
The present disclosure provides a multiphoton imaging method. The method includes a) immersing a semi-submersible microscope objective in a liquid medium that is at least one of scattering or absorbing; b) directing laser light through the semi-submersible microscope objective and into the liquid medium in an image-wise manner under conditions such that multiphoton absorption by the multiphoton absorber occurs, and at least partial polymerization of the polymerizable compound occurs resulting in an article; and c) removing uncured polymerizable compound to clean the article. The liquid medium includes a polymerizable compound, a secondary component, and a multiphoton absorber. An article is also provided. The article includes a material defining one or more tortuous or arcuate channels, one or more internal architectural voids, one or more undercuts, one or more perforations, or combinations thereof, at least one of which exhibits a surface roughness of 1.0 micrometer Ra or less.
Abstract:
A semi-submersible microscope objective includes a microscope objective having a protective barrel with an optical inlet and optical outlet, and a protective element affixed to the microscope objective, sealing the optical exit but not the optical inlet. A transparent portion of the protective element is aligned with the optical exit. The protective element is separable from the microscope objective without damaging the microscope objective. Use of the semi-submersible microscope objective in a multiphoton imaging method is also disclosed.
Abstract:
A semi-submersible microscope objective (100) includes a microscope objective having a protective barrel (120) with an optical inlet (122) and optical outlet (124), and a protective element (130) affixed to the microscope objective, sealing the optical outlet (124) but not the optical inlet (122). A transparent portion (132) of the protective element is aligned with the optical exit (124). The protective element is separable from the microscope objective without damaging the microscope objective. Use of the semi-submersible microscope objective in a multiphoton imaging method is also disclosed.
Abstract:
A semi-submersible microscope objective (100) includes a microscope objective having a protective barrel (120) with an optical inlet (122) and optical outlet (124), and a protective element (130) affixed to the microscope objective, sealing the optical outlet (124) but not the optical inlet (122). A transparent portion (132) of the protective element is aligned with the optical exit (124). The protective element is separable from the microscope objective without damaging the microscope objective. Use of the semi-submersible microscope objective in a multiphoton imaging method is also disclosed.
Abstract:
An exposure system includes a light source emitting a beam along an optical axis that is capable of inducing a multi-photon reaction in a resin. The exposure system further includes a resin undergoing multiphoton reaction, as well as an automated system including a monitor that measures at least one property of the beam selected from power, pulse length, shape, divergence, or position in a plane normal to the optical axis. The monitor generates at least one signal indicative of the property of the beam, and a sub-system adjusts the beam in response to the signal from the monitor.