Abstract:
The invention relates to A curable composition for producing dental composite crowns, the composition comprising a resin matrix comprising polymerizable (meth)acrylate(s) not comprising a urethane moiety, polymerizable urethane(meth)acrylate(s), wherein the polymerizable (meth)acrylate(s) not comprising an urethane moiety are used in excess over the polymerizable urethane(meth)acrylate(s), a filler matrix comprising nanocluster(s), fumed silica in an amount below 8 wt. % with respect to the weight of the whole composition, an initiator system comprising photoinitiator(s), organic dye(s), the curable composition not comprising softener in an amount of more than 5 wt. % with respect to the weight of the whole composition, the curable composition having a viscosity below 150 Pa*s at 23° C. and a shear rate of 1 s−1. The invention also relates to a cured article obtained by radiation curing this curable composition by use of an additive-manufacturing method.
Abstract:
A method of capturing data from a patient's dentition with the steps of positioning a first optical sensor relative to patient's dentition, capturing the shape of a tooth in the patient's dentition, independent from capturing the shape, measuring a color at a location on the tooth, and providing a correlation between the location of the color and a coordinate in the captured shape. The invention helps providing a dental restoration at a relatively high optical, mechanical, and geometric quality.
Abstract:
The present invention relates to a process for producing a ceramic article, the process comprising the steps of providing a printing sol, the printing sol comprising solvent, nano-sized particles, radiation curable monomer(s) and photoinitiator, the printing sol having a viscosity of less than 500 mPa*s at 23° C., processing the printing sol as construction material in an additive manufacturing process to obtain a 3-dim article being in a gel state, the 3-dim article having a Volume A, transferring the 3-dim article being in a gel state to a 3-dim article being in an aerogel state, heat treating the 3-dim article to obtain a sintered 3-dim ceramic article, the ceramic article having a Volume F, Volume A of the 3-dim article in a gel state being more than 500% of Volume F of the ceramic article in its sintered state. The invention also relates to a ceramic article obtainable according to such a process. The ceramic article can have the shape of a dental or orthodontic article.
Abstract:
The invention relates to the use of a printing sol as construction material in an additive manufacturing process for producing a 3-dim article, the printing sol comprising solvent(s), nano-sized crystalline zirconia particles in an amount from 2 to 25 vol.-% with respect to the volume of the sol, the average primary particle size of the nano-sized crystalline zirconia particles being in a range up to 50 nm, a first monomer being a polymerizable surface modification agent represented by formula A-B, with A being capable of attaching to the surface of the nano-sized crystalline zirconia particles and B being a radiation curable group, optionally a second monomer, the second monomer comprising at least one radiation curable moiety but no acidic or silane group(s), photo initiator(s). The invention also relates to a ceramic article obtainable according to such a process.
Abstract:
The present invention is directed to a process for producing a sintered lithium disilicate glass ceramic dental restoration out of a porous 3-dim article, the process comprising the step of sintering the porous 3-dim article having the shape of a dental restoration with an outer and inner surface to obtain a sintered lithium disilicate ceramic dental restoration, the sintered lithium disilicate glass ceramic dental restoration comprising—Si oxide calculated as SiO2 from 55 to 80 wt.-%, —Li oxide calculated as Li2O from 7 to 16 wt.-%, —Al oxide calculated as Al2O3 from 1 to 5 wt.-%, and—P oxide calculated as P2O5 from 1 to 5 wt.-%, wt.-% with respect to the weight of the dental restoration, the sintering being done under reduced atmospheric pressure conditions, the reduced atmospheric pressure conditions being applied at a temperature above 600° C. The present invention is also directed to a kit of parts comprising a porous 3-dim article having the shape of a dental milling block and a respective instruction of use.
Abstract:
The invention relates to a dental milling block (1) comprising a dental article (2) having an outer surface, the dental article having been produced based on personalized data, wherein the outer surface of the dental article is at least partially covered with a surrounding material. The invention further relates to a process of producing a dental milling block, the process comprising the steps of: •a) providing a personalized Data Set C containing geometry data of the dental article and colour data related to said geometry data, •b) generating a layer of hardenable material on a surface, •c) applying a colour agent to the layer of hardenable material of step b), wherein the colour agent is applied to at least some regions of those areas of the layer of hardenable material which are related to the geometry data of the dental article, •d) consolidating the result obtained in step c) thereby obtaining an at least partially hardened layer of material.
Abstract:
A system (1) for washing a 3D-printed object (4). The system (1) has a washing device (2) and a workpiece (3) that includes the 3D-printed object (4). The washing device (2) has a container (7) that forms a process chamber (8) for receiving a liquid cleaning agent (9), and the container (7) has an inlet (10) into the process chamber (8). The workpiece (3) further has a support structure (6) that supports the 3D-printed object (4) and a base (5) supporting the support structure (6). The base (5), in a mating relationship with the inlet (10), forms a restraint preventing the workpiece (3) from passing through the inlet (10) in a situation in which the workpiece (3) is placed with the 3D-printed object (4) located within the process chamber (8).
Abstract:
A device for progressively building up an object from a light hardenable material. The device has a perforated build platform for the object. The build platform forms a build surface that faces a light source. The build platform and the light source are positionable relative to each other by computer control. The device is further configured for supplying the light hardenable material through the perforation of the build platform for building up the object. The invention enables the making of colored objects by stereolithography.
Abstract:
A system (1) for washing a 3D-printed object (4). The system (1) has a washing device (2) and a workpiece (3) that includes the 3D-printed object (4). The washing device (2) has a container (7) that forms a process chamber (8) for receiving a liquid cleaning agent (9), and the container (7) has an inlet (10) into the process chamber (8). The workpiece (3) further has a support structure (6) that supports the 3D-printed object (4) and a base (5) supporting the support structure (6). The base (5), in a mating relationship with the inlet (10), forms a restraint preventing the workpiece (3) from passing through the inlet (10) in a situation in which the workpiece (3) is placed with the 3D-printed object (4) located within the process chamber (8).
Abstract:
A dental coloring stamp has a transfer pad for transferring a dental coloring solution to a precursor of a dental restoration. The transfer pad is at least partially formed of an open-celled elastic sponge and has a free transfer surface. The cross-section of the transfer pad is greater than a circular area of 10 mm in diameter so that a side of a dental restoration precursor can be stamped and thus colored. The invention helps facilitating the coloring of dental restorations.