Abstract:
A robotic repair unit (400) is presented that includes a removal tool (330, 425) coupled to the robotic repair unit (400). The removal tool (330, 425) is configured to remove fluid or debris from a worksurface (130). The repair unit (400) also includes a controller (150) configured to control the robotic repair unit (400).
Abstract:
A fluid dispensing system for a robotic repair unit that includes a fluid container. The system also includes a fluid dispenser associated with a robotic repair unit. The system also contains a fluid coupler that connects the polish container to the polish dispenser. The system also contains a mounting mechanism configured to couple the polish container to a robotic repair unit.
Abstract:
A method and associated system provides automated abrasive paint repair using automated abrasive paint repair devices that selectively sand, buff, and polish a substrate in response to received instructions generated by a controller. The controller receives coordinates of each identified defect in the substrate along with parameters describing characteristics of each defect, selects a sanding process, a buffing process, and/or a polishing process based on empirically derived rules established by skilled/expert human operators and the received parameters. The controller outputs instructions to cause the automated abrasive paint repair devices to execute the selected sanding process, buffing process, and/or polishing process using the received parameters. The empirically derived rules and parameters may be stored in a lookup table and/or updated by a machine learning module.
Abstract:
A robotic device that can include an end effector configured to manipulate one or more tools that drives one or more consumable abrasive products to abrade a substrate along several different surface dimensions, wherein the end effector comprises: three linear actuators each configured to move orthogonal relative to one another and at least one tool mount coupled to one of the three linear actuators and coupled to the tool.
Abstract:
An apparatus includes a robotic manipulator with a stationary base, and an end effector actuated by the robotic manipulator, wherein the end effector is adjacent to a workpiece. A scanning laser head unit includes a laser and an optical train configured to move a laser beam over the workpiece. A control unit is configured to move the robotic manipulator such that movement of the end effector tracks movement of the laser beam.
Abstract:
A method of tuning the contact pressure across an abrasive disc is presented. The method includes coupling the abrasive disc to a backup pad comprising a pressure tuning feature that causes an experienced pressure by a worksurface, across a radius of the abrasive disc, to be uniform. The method also includes abrading a worksurface by contacting the abrasive disc to the worksurface. The backup pad causes the abrasive disc to have a cut rate that is substantially uniform across the surface of the abrasive disc when compared to the abrasive disc on a backup pad with no pressure tuning feature.
Abstract:
An imaging and repair system (100) is presented that includes a first imaging system (110) configured to image and detect a defect on a worksurface. The first imaging system comprises a first camera configured to capture a plurality of first images of the worksurface. The plurality of first images are stored in a data source. The system also includes a second imaging system (110) configured to image and characterize an orange peel of the worksurface in an area proximate the defect. Characterizing the worksurface comprises identifying a delta value of orange peel. The system also includes a defect repair processor configured to select a repair strategy based on a defect type. The system also includes a defect modifier configured to modify the selected repair strategy based on the orange peel characterization of the worksurface. The system also includes a defect repair tool (120) configured to automatically effect the modified repair strategy.
Abstract:
A robotic paint repair system that can comprise: a consumable abrasive product configured to abrade a substrate, a tool configured to drive the consumable abrasive product to abrade, a robotic device configured to manipulate the tool and a compliant accessory actuator positioned between the tool and the substrate, wherein the compliant accessory actuator is driven to apply a desired force and a desired stiffness to the consumable abrasive product in response to sensed data collected between the tool and the substrate
Abstract:
A robotic paint repair system that can comprise: a consumable abrasive product configured to abrade a substrate, a tool configured to drive the consumable abrasive product to abrade, a robotic device configured to manipulate the tool and a compliant accessory actuator positioned between the tool and the substrate, wherein the compliant accessory actuator is driven to apply a desired force and a desired stiffness to the consumable abrasive product in response to sensed data collected between the tool and the substrate
Abstract:
A disc changing system for a robotic defect repair system is presented. The system has a first abrasive disc and a second abrasive disc. The first and second abrasive discs are coupled to a liner. The system includes an abrasive disc placement device configured to automatically: remove the first abrasive disc from the liner, transport the first abrasive disc to a robotic tool of the robotic defect repair system, and place the first abrasive disc on a backup pad coupled to the robotic tool. The system also includes an abrasive disc remover configured to automatically remove the first abrasive disc after receiving a removal signal. The system also includes a controller configured to send an instruction to the disc placement device to remove, transport and place the first abrasive disc, instruct the robotic tool to conduct an abrasive operation. The controller is also configured to send the removal signal. The controller is a processor and the instructions are stored on a non-transitory computer-readable medium and executed by the processor.