Abstract:
An adhesive-backed polymeric film assembly that comprises: a polymeric film having one layer or multiple layers, a back surface and a front surface, with an adhesive bonded to the back surface; and a release liner having an outer surface and an inner surface releaseably bonded to the adhesive, wherein the assembly is wound into a roll, with the outer surface of the release liner facing outwardly and the front surface of the polymeric film facing inwardly.
Abstract:
Described herein is a multilayered article and methods of making and using such articles. The multilayered article comprises: • (a) a microsphere layer comprising a plurality of microspheres (11) disposed in a monolayer; • (b) a bead bonding layer (12) comprising a first major surface and a second opposing major surface wherein the plurality of microspheres is at least partially embedded in the first major surface of the bead bonding layer, and wherein the bead bonding layer comprises a thermoset polyurethane, and wherein the thermoset polyurethane is derived from one or more liquid polyols; and • (c) an elastomeric layer (14) disposed on the second opposing major surface of the bead bonding layer.
Abstract:
A display system including a lightguide and first and second reflective layers disposed on opposite sides of the lightguide is provided. The lightguide has opposing first and second major surfaces and includes a light extraction pattern for extracting light that would otherwise be confined and propagate within the lightguide primarily by total internal reflection. Light extracted by the light extraction pattern exits the lightguide through at least one of the first and second major surfaces of the lightguide. Each of the first and second reflective layers has an average specular reflectance of at least 50% in a predetermined wavelength range. The light extraction pattern may be repeatedly imaged by the first and second reflective layers to produce three-dimensional stacked images of the light extraction pattern.
Abstract:
A multilayer film is described comprising a first film layer comprising an organic polymeric material, wherein the first film layer has an elongation of at least 250%; and a second film layer comprising a crosslinked polyurethane wherein the polyurethane comprises polymerized units of a polyamide. In some embodiments, the organic polymeric material of the first film layer comprises polyurethane. Also described is a method of protecting a surface of a motor vehicle and a method of making a multilayer protective film.
Abstract:
A pressure sensitive adhesive composition includes a polyurethane polymer that includes the reaction product of a polyisocyanate component and a polyol component. The polyol component has a total solubility parameter ranging from 10 to 14 (cal/cm 3 ) 1/2 .
Abstract translation:压敏粘合剂组合物包括包含多异氰酸酯组分和多元醇组分的反应产物的聚氨酯聚合物。 多元醇组分的总溶解度参数为10-14(cal / cm 3)1/2。
Abstract:
There is provided an article comprising at least a first surface having a first binder layer selected from at least one of linear resins and resins having low cross link densities, where the first binder layer has a first major surface opposite a second major surface; and a plurality of microspheres at least partially embedded in the first major surface of the first binder layer. For at least a portion of the first major surface, the plurality of micro spheres may cover 30% to 50% of that portion, and the microspheres may be substantially uniformly spaced.
Abstract:
Disclosed herein are hard coat compositions and composite films including a thermoplastic polyurethane. A hard coat composition includes a thermoplastic polyurethane having a hard segment content of 80 percent by weight or greater. The thermoplastic polyurethane is a reaction product of a) a diisocyanate; b) a polyol optionally comprising a cyclic structure; and c) a chain extender. At least one of the polyol or the chain extender comprises at least one side chain and at least one of the diisocyanate or the chain extender comprises a cyclic structure. A composite film includes 1) a hard coat layer having opposing first and second major surfaces; and 2) a second layer disposed on at least a portion of the hard coat layer. These materials can serve decorative and/or protective functions while displaying both good elongation at moderate temperatures and high hardness.
Abstract:
Described herein is a multilayered article (10) and methods of making and using such articles. The multilayered article (10) comprises: • (a) a microsphere layer (11) comprising a plurality of microspheres disposed in a monolayer; • (b) a bead bonding layer (12) comprising a first major surface and a second opposing major surface and the plurality of microspheres is partially embedded in the first major surface of the bead bonding layer, and comprises a thermoset polyurethane having a glass transition temperature of at least 35°C; • (c) a primer layer (14) disposed on the second major surface of the bead bonding layer wherein the primer layer comprises a copolymer of polyurea and polyurethane and wherein the primer layer is covalently attached to the bead bonding layer via urea linkages; and • (d) an elastomeric layer (16) disposed on the primer layer opposite the bead bonding layer, wherein the elastomeric layer comprises a polyurethane thermoplastic elastomer.
Abstract:
Surfacing films and related processes are provided. These films include a first clear coat layer comprising a first crosslinked polyurethane that is the reaction product of an isocyanate; a polyol selected from the group consisting of: a caprolactone polyol, polycarbonate polyol, a polyester polyol, acrylic polyol, polyether polyol, polyolefin polyol, and mixtures thereof; and a hydroxy-functional silicone poly(meth)acrylate; a second clear coat layer comprising a crosslinked polymer that is essentially free of hydroxy-functional silicone poly(meth)acrylate; a bulk layer comprising a thermoplastic polyurethane; and an adhesive layer. The provided films overcome the problem of migration of solvents and other impurities into the polyurethane bulk layer because the clear coat layer is cured, and solvents removed, prior to the coating of the polyurethane bulk layer. Manufacturing of these films can provide substantially faster line speeds and reduced waste.
Abstract:
Disclosed herein are improved thermoplastic polyurethane compositions, articles, and related methods. These compositions include aliphatic thermoplastic polyurethanes having a hard segment content ranging from 57 percent to 80 percent by weight. The hard coat compositions have a Shore D hardness of at least 70 and can display an Elongation at Break test result at 25 degrees Celsius of at least 150 percent. These materials, when hardened, can serve decorative and/or protective functions while displaying both a high degree of elongation at moderate temperatures and high hardness.