Abstract:
A graffiti-repellant article comprising a substrate having a surface comprising metal, metal oxide, silicon oxide, or combinations thereof; and an impervious coating disposed on said surface, wherein the impervious coating comprises a fluorinated polymer bonded to the surface layer; wherein the fluorinated polymer has the following general formula (I) where n = 6 to 120.
Abstract:
There is provided a thermoformable article comprising at least a first surface having a binder resin layer comprising a fluorine-containing polymer, where the binder resin layer has a first major surface opposite a second major surface; and a plurality of microspheres partially and adhered to the first major surface of the binder resin layer; where the fluorine-containing polymer is a partially fluorinated polymer derived from at least one fluorine containing monomer and two or more non-fluorinated monomers having at least one active hydrogen functional group, and further wherein at least one but not all of the active hydrogen functional groups are reacted with at least one curing agent having latent functionality. In some instances the curing agent comprises polyisocyanate. There is also provided a thermoset article derived from such thermoformable articles.
Abstract:
Described herein is a multilayered article (10) and methods of making and using such articles. The multilayered article (10) comprises: • (a) a microsphere layer (11) comprising a plurality of microspheres disposed in a monolayer; • (b) a bead bonding layer (12) comprising a first major surface and a second opposing major surface and the plurality of microspheres is partially embedded in the first major surface of the bead bonding layer, and comprises a thermoset polyurethane having a glass transition temperature of at least 35°C; • (c) a primer layer (14) disposed on the second major surface of the bead bonding layer wherein the primer layer comprises a copolymer of polyurea and polyurethane and wherein the primer layer is covalently attached to the bead bonding layer via urea linkages; and • (d) an elastomeric layer (16) disposed on the primer layer opposite the bead bonding layer, wherein the elastomeric layer comprises a polyurethane thermoplastic elastomer.
Abstract:
An electronic device is described comprising an enclosure, wherein the enclosure comprises a cured epoxy resin composition comprising at least 50 volume % of electrically non-conductive thermally conductive inorganic particles, wherein the inorganic particles are selected from alumina, boron nitride, silicon carbide, alumina trihydrate and mixtures thereof. The enclosure may be a housing of a phone, laptop, or mouse. Alternatively, the enclosure maybe a case for an electronic device. Also described are epoxy resin compositions and a method of making an enclosure for an electronic device.
Abstract:
Described herein is decorative article having a coefficient of friction less than 0.3 wherein the decorative articles comprises: (i) a microsphere layer comprising a plurality of microspheres, wherein the microsphere layer comprises a monolayer of microspheres and wherein the plurality of microspheres are in a microscopic periodic pattern; and (ii) a bead bonding layer disposed on the microsphere layer, wherein the plurality of microspheres are partially embedded in the bead bonding layer. Also disclosed herein are transfer articles and methods of making the decorative articles and transfer articles.
Abstract:
Described herein is a bead-coated sheet and methods of making wherein a sheet substrate selected from a metal, a glass, and/or a glass-ceramic, comprises a layer of microspheres that are partially embedded into the surface of the sheet substrate such that a portion of each of the microspheres projects outwardly from the surface of the sheet substrate.
Abstract:
There is provided an article having a compliant article where the compliant article comprises an polymer layer and a first layer disposed along a first major surface of the polymer layer; and a plurality of microspheres partially embedded and adhered to a major surface of the first layer opposite the surface that is disposed along the first major surface of the polymer layer, wherein the article has a compression modulus of less than or equal to 0.5 MPa. There is also provided an article having a compliant article where the compliant article comprises a polymer layer; and a plurality of microspheres partially embedded and adhered to a major surface of the compliant article, where the article has a compression modulus of less than or equal to 0.5 MPa, and further where the article is a decorative article.
Abstract:
There is provided an article comprising at least a first surface having a fluorine-containing polymeric binder resin layer and a plurality of microspheres partially embedded in a first major surface of the binder resin layer and adhered thereto; wherein the fluorine-containing polymer is derived in part from at least one partially fluorinated, or non-fluorinated, monomer; and wherein the article exhibits a stain resistance to yellow mustard at elevated temperature and humidity as measured by the change in b* of less than 50. There are also provided such articles wherein the fluorine-containing polymer is derived in part from at least one partially fluorinated, or non-fluorinated, monomer; and wherein the fluorine content along the polymeric backbone of the fluorine-containing polymer is from about 27% to 72% by weight. There are also provided such articles wherein the article is a thermoformable article exhibiting chemical resistance according to ASTM D5402 - 06.
Abstract:
Described herein is a construction comprising a microsphere layer comprising a plurality of microspheres wherein the microspheres comprise glass, ceramic, and combinations thereof; a first polymer layer comprising a first polymer, wherein the plurality of microspheres is partially embedded in the first polymer layer; and an undercoat layer therebetween the microsphere layer and first polymer layer, wherein the undercoat layer comprises a plurality of silica nanoparticles. Also disclosed herein are articles comprising the construction and methods of making thereof. In one embodiment, the constructions of the present disclosure have good anti-soiling and abrasion resistant properties.
Abstract:
There is provided an article comprising at least a first surface having: (a) a first binder layer; (b) a plurality of transparent microspheres at least partially embedded in the first binder layer; wherein the transparent microspheres have refractive indices that are less than a refractive index of the first binder layer, wherein the plurality of transparent microspheres have an average diameter of at least 5 µm. There is also provided a transfer article comprising: (a) a transfer carrier, the transfer carrier comprising: (i) a support layer; and (ii) a thermoplastic release layer bonded to the support layer; (b) a layer of a plurality of transparent microspheres, formed on a side of the thermoplastic transparent microsphere release layer opposite the support layer, wherein the plurality of transparent microspheres have refractive indices of below about 1.490.