Abstract:
Described herein is a dicarboxylic acid compound of formula (I): Wherein: R3 comprises an aryl group, R2 is an alkylene group comprising 1 to 6 carbon atoms, n is 0 or 1, R1 is H or CH3, and X is S or NZ, wherein Z is H, an alkyl group comprising 1 to 4 carbon atoms or a phenyl group. Such compounds can be used to modify the surface of inorganic particles. These modified inorganic particles may then be advantageously used in polymerizable resins to increase the refractive index of the resulting composite, while enabling good flow properties of the polymerizable composition.
Abstract:
A composition comprising at least one terminally-unsaturated diarylsulfide compound represented by the formula: wherein each R represents an allyl group or a propargyl group. The composition may further comprise an organic polythiol, and optionally a free-radical initiator, and may be formulated as a two-part polymerizable composition. Methods of polymerizing the compositions are also disclosed.
Abstract:
The present disclosure provides novel light emitting devices including AMOLED displays, based on transparent OLED architecture, where a laminated nanostructured light extraction film can produce axial and integrated optical gains as well as improved angular luminance and color. Generally, the transparent AMOLED displays (100) with laminated sub-micron extractors (110a-c) include: (a) an extractor (110a) on a transparent substrate (112a) for light outcoupling on both sides of the transparent device (120); or (b) an extractor (110b) on a reflective film (112b) for providing light outcoupling off the bottom side of the bottom-emitting (BE) AMOLED (120); or (c) an extractor (110c) on a light absorbing film (112c) for providing outcoupling off the bottom side of the BE AMOLED (120) combined with improved ambient contrast.
Abstract:
Curable, coatable compositions include silane surface-treated inorganic nanoparticles with a high refractive index, and a curable reaction mixture. The curable reaction mixture includes a first (meth)acrylate monomer comprising a high refractive index (meth)acrylate monomer with a refractive index of 1.6 or higher, a second (meth)acrylate monomer comprising a lower refractive index (meth)acrylate monomer with a refractive index of less than 1.6, and at least one initiator. Cured optical coatings prepared from the compositions are optically clear, having a visible light transmission of at least 88% and a haze of 5% or less, and have a refractive index of at least 1.78, and are capable of passing a 10 millimeter mandrel flexibility test.
Abstract:
Presently described is a method for coupling an optical film to a substrate, laminated optical constructions comprising an optical film and an optical coupling layer disposed on a surface layer of the optical film, and coating compositions useful for optical an optical coupling layer. The coating compositions comprise at least 40 wt.-% inorganic nanoparticles having a refractive index of at least 1.85 and a polymeric silane surface treatment.
Abstract:
Described herein is a dicarboxylic acid compound of formula (I): Wherein: R3 comprises an aryl group, R2 is an alkylene group comprising to 6 carbon atoms, n is 0 or 1, R1 is H or CH3, and X is S or NZ, wherein Z is H, an alkyl group comprising to 4 carbon atoms or a phenyl group. Such compounds can be used to modify the surface of inorganic particles. These modified inorganic particles may then be advantageously used in polymerizable resins to increase the refractive index of the resulting composite, while enabling good flow properties of the polymerizable composition
Abstract:
Curable, coatable compositions include silane surface-treated inorganic nanoparticles with a high refractive index, and a curable reaction mixture. The curable reaction mixture includes a first (meth)acrylate monomer comprising a high refractive index (meth)acrylate monomer with a refractive index of 1.6 or higher, a second (meth)acrylate monomer comprising a lower refractive index (meth)acrylate monomer with a refractive index of less than 1.6, and at least one initiator. Cured optical coatings prepared from the compositions are optically clear, having a visible light transmission of at least 88% and a haze of 5% or less, and have a refractive index of at least 1.78, and are capable of passing a 10 millimeter mandrel flexibility test.
Abstract:
The present disclosure provides a light emitting device, an active matrix organic light emitting diode (AMOLED) device that includes the light emitting device, and an image display device that includes the light emitting device. In particular, the light emitting device includes a microcavity organic light emitting diode (OLED) (120), a light extraction film (110), and a high-index capping layer (122) disposed between the microcavity OLED and the light extraction film.
Abstract:
Presently described is a method for coupling an optical film to a substrate, laminated optical constructions comprising an optical film and an optical coupling layer disposed on a surface layer of the optical film, and coating compositions useful for optical an optical coupling layer. The coating compositions comprise at least 40 wt.-% inorganic nanoparticles having a refractive index of at least 1.85 and a polymeric silane surface treatment.
Abstract:
Presently described is a method for coupling an optical film to a substrate, laminated optical constructions comprising an optical film and an optical coupling layer disposed on a surface layer of the optical film, and coating compositions useful for optical an optical coupling layer. The coating compositions comprise at least 40 wt.-% inorganic nanoparticles having a refractive index of at least 1.85 and a polymeric silane surface treatment.