Abstract:
The present invention is generally related to a product and process to reduce the microbial contamination on organic matter, such as processed meat, fruits and vegetables, plant parts, inanimate surfaces such as textiles and stainless steel, and in the mouth or on dental products. In particular, the invention is related to a product and process to disinfect surfaces using an antimicrobial composition containing an antimicrobial lipid, an enhancer selected from the group consisting of bacteriocins, antimicrobial enzymes, sugars, sugar alcohols, iron-binding proteins and derivatives thereof, siderophores, and combinations thereof, and optionally a surfactant.
Abstract:
Aspects of the present disclosure relate to a multicomponent filament and articles thereof. The multicomponent filament comprises at least a first component and a second component. The first component includes a thermoplastic polymer. The second component includes a hydrophilic thermoplastic polymer comprising 65% (w/w) to 90% (w/w) (inclusive) hydrophilic segments. The first component is capable of forming a continuous filament with the second component.
Abstract:
The present disclosure provides a tissue retractor. The retractor includes first and a second tissue-support assemblies that are moveably coupled together. Each of the first and second tissue-support assemblies includes a flexible sheet extending between two horizontal members, each sheet comprising a face configured to contact tissue. The tissue support assemblies are configured such that, in use, the first and second sheets exert substantially all of the force against the tissue that is to be retracted.
Abstract:
Shapeable articles with structured elements and kits including one or more of the shapeable articles. The shapeable articles described herein have a variety of uses including use as surgical retractors for moving and/or restraining tissue and/or organs to improve access to a surgical site. The shapeable articles described herein can be shaped or manipulated into three-dimensional shapes without the use of tools and hold those shapes after removal of the force required to achieve the shape.
Abstract:
An antiseptic composition comprising a multivalent cationic antiseptic present in an amount of 0.05 to 0.5 percent based upon the ready to use composition; an anionic compound which is water soluble in an amount of at least 0.1 grams in 100 grams water at 23 deg C., wherein the anionic compound is present at a concentration which would result in precipitation of the multivalent cationic antiseptic in the composition without a solubilizing surfactant present; wherein the composition, with the antiseptic, surfactant and anionic compound combined with each other, is free of precipitate.
Abstract:
Antimicrobial compositions, especially those useful when applied topically to tissue, such as mucosal tissues (i.e., mucous membranes), that include an antimicrobial selected from the group consisting of peroxides, C6-C14 alkyl carboxylic acids, C6-C14 alkyl carboxylate ester carboxylic acids, C8-C22 mono- or polyunsaturated carboxylic acids, and antimicrobial natural oils. The compositions can also include an enhancer component, a surfactant, a hydrophobic component, and/or a hydrophilic component. Such compositions provide effective topical antimicrobial activity and are accordingly useful in the treatment and/or prevention of conditions that are caused, or aggravated by, microorganisms (including viruses).
Abstract:
Described herein is a warming blanket having a structure comprising a first layer of material forming a bottom layer with openings to allow a profusion of air through the bottom layer, a second layer of material forming an upper layer wherein the upper layer is coupled to the bottom layer to form an initial shape of the warming blanket and to form a plurality of interconnected air passageways between the first and second layers of material, wherein at least a portion of the structure is deformable in at least one dimension to reshape the periphery of the warming blanket while maintaining the integrity of the interconnecting air passageways throughout the structure; and wherein the deformable portion of the blanket is deformable by at least a 50% elongation. Examples of materials comprising the deformable portions of the warming blanket include low density polyethylene, metallocene polyethylene, polypropylene, parafilm, and polyurethane.
Abstract:
A copolymer composition that includes a silicone copolymer, methods of making the composition, and articles that include the composition, wherein the copolymer composition includes a silicone copolymer having a backbone composition that includes: silicone segments in an amount of 5 wt-% to 40 wt-%, based on the total weight of the silicone copolymer; hydrophilic segments in an amount of 40 wt-% to 75 wt-%, based on the total weight of the silicone copolymer; and reinforcing segments in an amount of 5 wt-% to 30 wt-%, based on the total weight of the silicone copolymer, wherein the reinforcing segments are derived from the reaction of one or more chain extenders with one or more multi-functional isocyanates, multi-functional carboxylic acids, multi-functional anhydrides, multi-functional esters, and/or multi-functional acid halides; wherein the silicone segments, hydrophilic segments, and reinforcing segments are connected through urea, urethane, amide, and/or oxamide linkages; wherein the hydrophilic segments and the reinforcing segments are present in a weight ratio of 1.8:1 to 8:1; and the hydrophilic segments and the silicone segments are present in a weight ratio of 1.3:1 to 4.5:1.
Abstract:
A composite wound dressing apparatus promotes healing of a wound via the use of a micropump system. The micropump system includes a micropump that applies a subatmospheric pressure to the wound to effectively draw wound fluid or exudate away from the wound bed, or deliver fluids to the wound bed, without the need for a cumbersome external pressure (e.g. vacuum) source. Hence, the wound dressing and micropump system is portable which allows the patient mobility that is unavailable when an external vacuum source is used.