Abstract:
Curable adhesive free-standing films and adhesive systems comprising such films are provided. In some embodiments, a curable adhesive free-standing film comprises a blend of: a) a first film-forming polymer or oligomer; b) a first species comprising first unsaturated free-radically polymerizable groups, which may be a) or a species other than a); c) a first transition metal cation; d) a reducing agent; and no oxidizing agent. In some embodiments, an adhesive system comprises: I) a first curable adhesive free-standing film as described preceding; and II) a second curable adhesive free-standing film comprising a blend of: e) a second film-forming polymer or oligomer; f) a second species comprising second unsaturated free-radically polymerizable groups, which may be e) or may be a species other than e); and g) an oxidizing agent. In some embodiments, the curable adhesive free-standing films may be pressure sensitive adhesives prior to cure. Methods of use are provided.
Abstract:
An adhesive article comprising first and second tacky latent adhesive layers disposed on respective first and second opposed major surfaces of a substrate. Each of the first and second tacky latent adhesive layers independently comprises at least one polymerizable component, and a redox initiator system comprising a transition metal complex that participates in a redox cycle, an oxidizing agent, and a blocked reducing agent represented by the formula ((I). Each of R 1 and R 2 are independently H, an alkyl, an aryl, or RPhoto5 wlth the proviso that at least one of R1 and R 2 is RPhoto. R Photo represents a photoremovable group. Each of R 3 and R 4 independently represents H, an alkyl group, or an aryl group comprising a monovalent ester, ether, urethane, or carbonate group. Methods of making and using the adhesive articles are also disclosed.
Abstract:
A core-sheath filament having a non-tacky sheath and a hot-melt processable adhesive core, the sheath exhibiting a melt flow index of less than 15 grams per 10 minutes, is provided. Methods of making the core-sheath filament and methods of using the core-sheath filament to print a hot-melt processable adhesive onto a primer-treated substrate surface to provide a structural bond are described.
Abstract:
Polymerizable compositions comprising a redox initiator system is disclosed. The redox initiators comprises a photolabile reducing agent, that photolyzes and initiates the redox cycle. Dental compositions comprising dental resins and the photolabile redox initiator system are also described.
Abstract:
An adhesive article comprising first and second tacky latent adhesive layers disposed on respective first and second opposed major surfaces of a substrate. Each of the first and second tacky latent adhesive layers independently comprises at least one polymerizable component, and a redox initiator system comprising a transition metal complex that participates in a redox cycle, an oxidizing agent, and a blocked reducing agent represented by the formula ((I). Each of R1 and R2 are independently H, an alkyl, an aryl, or RPhoto5 wlth the proviso that at least one of R1 and R2 is RPhoto. RPhoto represents a photoremovable group. Each of R3 and R4 independently represents H, an alkyl group, or an aryl group comprising a monovalent ester, ether, urethane, or carbonate group. Methods of making and using the adhesive articles are also disclosed.
Abstract:
Polymerizable compositions comprising a redox initiator system is disclosed. The redox initiators comprises a photolabile reducing agent, that photolyzes and initiates the redox cycle. Dental compositions comprising dental resins and the photolabile redox initiator system are also described.