Abstract:
Fluorinated ionomers (i.e., ion conducting polymers) that include a fluorinated polymer backbone with covalently bound pendent groups that include heteropolyacid (HP A) groups, or salts thereof, and perfluorosulfonic acid (PF SA) groups, or salts thereof, as well as polymer electrolyte membranes, fuel cells, and methods..
Abstract:
A fuel cell assembly includes first and second compression members. Two or more membrane electrode assembly (MEA) stacks are disposed between the compression members, each MEA stack having a positive and negative end. A first current collector is electrically coupled to a positive end of a first stack of the MEA stacks. A second current collector is electrically coupled to a negative end of a second stack of the MEA stacks. A current shunt is disposed between the compression members and electrically couples the MEA stacks.
Abstract:
Method of producing purified fluoropolymers comprising repeat units of tetrafluoroethylene and a fluoro-olefin comprising SO3- groups are described. In a first step, an unpurified aqueous dispersion of the fluoropolymer, including the counter-cations of the SO3- groups, is subjected to cation exchange. This cation-exchanged dispersion is then subjected to ultrafiltration. The resulting purified dispersions and fluoropolymers contain low levels of both cations and anions. Articles prepared from such purified fluoropolymers are also described.
Abstract:
A fluoropolymer is described comprising pendent groups having the formula: -(CF2)a-(OCbF2b)c-(OCeF2e)-SO2-[NX2-SO2(CF2)f-SO2]d-NX1-SO2-Rf wherein Rf is a perfluoroether and X1 and X2 are independently cationic counterions. Also described are various articles including catalyst ink, polymer electrolyte membranes, and membrane electrode assemblies comprising the fluoropolymer described herein; as well as a method of making a fluoropolymer.
Abstract:
The copolymer includes divalent units represented by formula -[CF2-CF2]-, at least one divalent unit represented by formula (I): and at least one divalent unit independently represented by formula (II): A is -N(RFa)2 or a is non-aromatic, 5- to 8-membered, perfluorinated ring comprising one or two nitrogen atoms in the ring and optionally comprising at least one oxygen atom in the ring, each RFa is independently linear or branched perfluoroalkyl having 1 to 8 carbon atoms and optionally interrupted by at least one catenated O or N atom, each Y is independently - H or -F, with the proviso that one Y may be -CF3, h is 0, 1, or 2, each i is independently 2 to 8, and j is 0, 1, or 2. A catalyst ink and polymer electrolyte membrane including the copolymer are also provided.
Abstract:
The method includes providing a component of an assembly having an interior portion and a peripheral portion and adhering separate strips of an adhesive tape to the peripheral portion of the component to surround the interior portion. The short side of a first strip is positioned adjacent a second strip. The adhesive tape includes an adhesive disposed on a backing, and the adhesive includes an amorphous fluoropolymer. The method further includes applying at least one of heat or pressure to the separate strips such that the adhesive flows seals any gap between the first and second strips and crosslinks. The method can be useful, for example, when the assembly is an electrochemical cell assembly and when the component includes at least one of an electrolyte membrane or a current collector.
Abstract:
A fuel cell assembly includes a membrane electrode assembly (MEA) stack has a plurality of stacked planar membranes. The MEA stack further includes gas passageways arranged so that anode and cathode gases flow perpendicular to the planar membranes between a first side and a second side of the fuel cell assembly. Anode gas inlet and outlet ports and cathode gas inlet and outlet ports are disposed on the first side of the fuel cell assembly and coupled to the gas passageways of the MEA stack.
Abstract:
A proton exchange membrane fuel cell stack includes two or more plate assemblies stacked together. Each plate assembly includes a membrane electrode assembly (MEA) disposed between a first plate and second plate. One of the first and second plates is an anode plate and the other is a cathode plate. The first and second plates each include a first side facing the MEA and a second side facing away from the MEA. The plates include flow fields on the first sides and gas manifold holes coupled to gas distribution passages of the fuel cell stack. The first plates each further include a flow path carrying gases from at least one of the gas manifold holes to the flow field of the first plate. The flow path is formed at least in part by channels on the second side of an adjacent second plate when the plate assemblies are stacked together.
Abstract:
A fuel cell assembly includes first and second compression members at first and second ends of the fuel cell assembly. A membrane electrode assembly (MEA) stack is disposed between the compression members. The MEA stack includes a fluid flow passage that allows gases to flow between the first and second ends of the fuel cell assembly. A fastening member connecting the first and second compression members and is disposed within the fluid flow passage of the MEA stack.
Abstract:
An article comprising a first gas distribution layer (100), a first gas dispersion layer (200), or a first electrode layer, having first and second opposed major surfaces and a first adhesive layer having first and second opposed major surfaces, wherein the second major surface (102) of the first gas distribution layer (100), the second major surface (202) of the first gas dispersion layer (200), or the first major surface of the first electrode layer, as applicable, has a central area, wherein the first major surface of the first adhesive layer contacts at least the central area of the second major surface of the first gas distribution layer, the second major surface of the first gas dispersion layer, or the first major surface of the first electrode layer, as applicable, and wherein the first adhesive layer comprises a porous network of first adhesive including a continuous pore network extending between the first and second major surfaces of the first adhesive layer. The articles described herein are useful, for example, in membrane electrode assemblies, unitized electrode assemblies, and electrochemical devices (e.g fuel cells, redox flow batteries, and electrolyzers)