Abstract:
Es wird ein Gleichspannungs-Hochspannungsisolator zur Isolierung eines mit Gleichspannung beaufschlagten Leiters angegeben. Der Gleichspannungs-Hochspannungsisolator weist einen um eine Achse (A) verlaufenden Grundkörper (50) aus Isoliermaterial und eine in Umfangsrichtung innerhalb des Grundkörpers umlaufende Feldsteuerelektrode auf. Mit dem Ziel, die Feldsteuerwirkung zu verbessern, weist die Feldsteuerelektrode zumindest bereichsweise einen ersten Umfangsbereich (10) und einen von dem ersten Umfangsbereich in Richtung der Achse (A) beabstandet verlaufenden zweiten Umfangsbereich (20) auf, so dass zwischen dem ersten Umfangsbereich (10) und dem zweiten Umfangsbereich (20) eine Durchdringung (30) ausgebildet ist.
Abstract:
Die Erfindung betrifft einen Gleichspannungs-Hochspannungsisolator (100) zur Isolierung eines mit Gleichspannung beaufschlagten Leiters (200), eine Hochspannungsanlage für Gleichstrom mit einem Gleichspannungs-Hochspannungsisolator (100) sowie die Verwendung eines Gleichspannungs-Hochspannungsisolators (100) in einer Hochspannungsanlage für Gleichstrom mit einem mit Gleichspannung beaufschlagten Innenleiter (200). Der Gleichspannungs-Hochspannungsisolator (100) weist einen um eine Isolatorachse (A) verlaufenden Grundkörper (50) aus Isoliermaterial, mindestens eine innerhalb des Grundkörpers (50) verlaufende, vorzugsweise um die Isolatorachse (A) umlaufende äußere Elektrode (10a, 10b), und mindestens eine innerhalb des Grundkörpers verlaufende, vorzugsweise um die Isolatorachse (A) umlaufende innere Elektrode (20) auf, wobei die äußere Elektrode (10a, 10b) im Bereich der äußeren Peripherie des Grundkörpers angeordnet ist, wobei die innere Elektrode (20) im Bereich der inneren Peripherie des Grundkörpers angeordnet ist, wobei im axialen Querschnitt das Verhältnis der durchschnittlichen Gesamtweite (wo) der äußeren Elektrode (10a, 10b) zu der durchschnittlichen Gesamtweite (wi) der inneren Elektrode (20) mindestens 0,6, vorzugsweise mindestens 0,8, besonders vorzugsweise mindestens 1,0 beträgt.
Abstract:
A high-voltage gas-insulated switchgear device (100) having a metallic encapsulation (110) including a particle trap (120) for holding particles is described. The particle trap (120) includes a cavity (130) in the encapsulation (110) and a shield arrangement (140). The shield arrangement (140) is at least partially arranged within the cavity (130), wherein the shield arrangement (140) includes a plurality of guiding elements (150) for guiding particles into the cavity (130), and wherein two or more adjacent guiding elements of the plurality of guiding elements (150) provide a particle guiding passage (155) to the bottom (131) of the cavity (130) of the particle trap (120). The plurality of guiding elements (150) of the shield arrangement is connected to each other for providing a shield arrangement insert. At least a portion of the two or more adjacent guiding elements of the plurality of guiding elements (150) are configured for providing an at least partially inclined particle guiding passage (155) with respect to a horizontal at a bottom (131) of the cavity (130) of the particle trap (120).
Abstract:
A supporting insulator (100) has an insulator body (10) and at least one conductor fitting (20) for applying a high voltage thereto. The conductor fitting (20) passes through the insulator in an axial direction (Z) whereby a contact area (C) between the insulator body (10) and the conductor fitting (20) is formed. The insulator body (10) comprises a notch (11A, 11B) abutting on the contact area (C); and the conductor fitting (20) comprises an adjacent notch (21A, 21B) abutting on the contact area (C). The notches (11A, 21A; 11B, 21B) form a pair of stress relief means for alleviating even those stresses stemming from a temperature difference.
Abstract:
An insulation material for a DC electrical component is suggested. The insulation material comprises a thermoset or thermoplastic matrix and a functional filler component. The functional filler component has a non-linear DC conductivity depending on an applied electrical field strength. At least in a temperature range of 0℃ to 120℃, the functional filler component has a bandgap in the range of 2 to 5 eV, optionally in the range of 2 to 4 eV. Furthermore, a method for producing an insulation material, a use of an insulation material for a high voltage DC electrical component, a DC electrical component comprising the insulation material and the use of a DC electrical component comprising the insulation material in a high voltage DC gas insulated device are suggested.
Abstract:
An interrupter unit (1) for gas blast circuit breakers has a central axis A and comprises a first contact portion (10) with arcing contact (12), a second contact portion (20) comprising a cylinder shaft (22) and a pin contact (25), an insulating nozzle (30) fixed to the first contact portion (10) and having a first section (32) surrounding the arcing contact (12), an intermediate cylindrical section (34) and a divergent section (36). A heating channel (40) with circumferential opening (42) leading into the nozzle (30) guides compressed gas into an arcing zone (50) during opening operation of the interrupter unit (1). At the circumferential opening (42) of the heating channel (40), a circumferential edge region (46) between a first side wall (60) of the heating channel (40) and a wall of the cylindrical nozzle section (34) comprises at least one edge (47) with an enveloping radius of at most 2 mm.
Abstract:
The invention relates to a DC voltage high-voltage insulator (100) for insulating a conductor (200) applied with DC voltage, a high-voltage system for direct current with a DC voltage high-voltage insulator (100), and the use of a DC voltage high-voltage insulator (100) in a high-voltage system for direct current with an inner conductor (200) applied with DC voltage. The DC voltage high-voltage insulator (100) has a base body (50) made from insulating material and running about an insulator axis (A), at least one outer electrode (10a, 10b) running within the base body (50), preferably surrounding the insulator axis (A), and at least one inner electrode (20) running within the base body, preferably surrounding the insulator axis (A), wherein the outer electrode (10a, 10b) is arranged in the area of the outer periphery of the base body, wherein the inner electrode (20) is arranged in the area of the inner periphery of the base body, wherein in the axial cross section, the ratio of the average total width (wo) of the outer electrode (10a, 10b) to the average total width (wi) of the inner electrode (20) is at least 0.6, preferably at least 0.8, particularly preferably at least 1.0.