Abstract:
Die Erfindung betrifft eine Ladeeinrichtung für Elektrofahrzeuge (1), umfassend mehrere Ladeanschlüsse (2), wovon jeder Ladeanschluss (2) für einen Leistungsaustausch mit wenigstens einem Elektrofahrzeug (1) eingerichtet ist, mehrere Stromrichter (3), wovon jeder Stromrichter (3) zum Umsetzen einer Leistung von einer Leistungsquelle (14) in ein geeignetes Format zum Laden des Elektrofahrzeugs (1) mit Gleichstrom eingerichtet ist, und eine schaltbare Anschlussmatrix (4), welche zum Verbinden wenigstens eines Stromrichters (3) mit wenigstens einem Ladeanschluss (2) mittels wenigstens eines Leistungsschalters (15) zum Bereitstellen eines maximalen Nennstroms I N an dem jeweiligen Ladeanschluss (2) eingerichtet ist, mehrere Hochvoltschützschalter (12), wobei zusätzlich zu der Anschlussmatrix (4) zwischen jedem Stromrichter (3) und jedem Ladeanschluss (2) wenigstens einer der Hochvoltschützschalter (12) im jeweiligen Gleichstrompfad angeordnet ist und jeder Hochvoltschützschalter (12) zum Schalten eines maximalen Stroms I MAX > 3 * I N eingerichtet ist, und mit einem Stromrichtergehäuse (11) innerhalb dessen alle Stromrichter (3), die Anschlussmatrix (4) und alle Hochvoltschützschalter (12) angeordnet sind.
Abstract:
A converter system (10) comprises a plurality of converter cells (26), each converter cell (26) being adapted for converting an AC cell input voltage into a cell output voltage and a transformer (18) with a plurality of secondary windings (22), each secondary winding (22) connected with one converter cell (26) and providing the AC cell input voltage of the one converter cell (26); wherein the secondary windings (22) are arranged into at least two groups (G 1 , G 2 , G 3 ) and the converter cells (26) connected to one group (G 1 , G 2 , G 3 ) are series-connected; wherein the transformer (18) is designed such that the secondary windings (22) of different groups (G 1 , G 2 , G 3 ) provide AC cell input voltages that are phase- shifted with respect to each other, such that higher order harmonics generated by the converter cells (26) cancel each other; and wherein the secondary windings (22) of one group (G 1 , G 2 , G 3 ) provide AC cell input voltages with at least two different phase-shifts (θ 1 , θ 2 , θ 3 , θ 4 , θ 5 , θ 6 ).
Abstract:
The invention relates to a Charging system, comprising a number of m chargers (C1, C2, C3) each adapted for providing electrical energy to charge an electrical vehicle (E1, E2, E3, E4), whereby m is an integer and m ≥ 1, a number of n outlet ports (P1, P2, P3, P4) each adapted for electrically connecting the electrical vehicle (E1, E2, E3, E4), whereby n is an integer and n ≥ 2, and a switchable connection matrix device (M) comprising a number of n outlet port switches (O1, O2, O3, O4) each adapted for electrically connecting at least one of the m chargers (C1, C2, C3) to one of the n outlet ports (P1, P2, P3, P4) and, if m > 1, a number of m-1 charger switches (S1, S2) each adapted for electrically connecting two of the m chargers (C1, C2, C3), whereby the switchable connection matrix device (M) is adapted for detecting a short-circuit between at least two outlet ports (P1, P2, P3, P4) and/or for generating a fault signal if the short-circuit between at least two outlet ports (P1, P2, P3, P4) is detected.
Abstract:
A converter system (10) comprises a plurality of converter cells (26), each converter cell (26) being adapted for converting an AC cell input voltage into a cell output voltage and a transformer (18) with a plurality of secondary windings (22), each secondary winding (22) connected with one converter cell (26) and providing the AC cell input voltage of the one converter cell (26); wherein the secondary windings (22) are arranged into at least two groups (G1, G2, G3) and the converter cells (26) connected to one group (G1, G2, G3) are series-connected; wherein the transformer (18) is designed such that the secondary windings (22) of different groups (G1, G2, G3) provide AC cell input voltages that are phase- shifted with respect to each other, such that higher order harmonics generated by the converter cells (26) cancel each other; and wherein the secondary windings (22) of one group (G1, G2, G3) provide AC cell input voltages with at least two different phase-shifts (θ1, θ2, θ3, θ4, θ5, θ6).