Abstract:
An enclosure for a dry-type transformer includes a bottom wall, a plurality of sidewalls coupled to and extending from the bottom wall, and a top wall coupled to the sidewalls so as to be spaced from the bottom wall. The top wall includes an opening therein. The bottom wall, sidewalls and top wall define an enclosed space for housing a dry-type transformer. Pressure relief structure is associated with the top wall and has at least one flap constructed and arranged in a closed position, to cover the opening. In the event an arc flash occurs in the enclosure creating gas pressure in the enclosure, the flap is constructed and arranged to move from the closed position to an opened position due to the gas pressure acting thereon, permitting the gas pressure to escape from the top of the enclosure through the opening.
Abstract:
A protective coating system for application to exposed surfaces of a transformer core prevents corrosion of the core. The protective coating is suitable for use in industrial and marine environments where many factors impact the life of the transformer core. The protective coating comprises at least three coating layers. The first coating layer is an inorganic zinc silicate primer. The second coating layer is a polysiloxane. The third coating layer is a room temperature or high temperature vulcanizing silicone rubber. A silicone rubber sealant may be further applied to outer edge surfaces of the core.
Abstract:
A method of manufacturing a transformer that includes forming a disc-wound coil using a plurality of pre-formed cooling ducts. Each cooling duct may be supported by a support pipe secured between walls of the cooling duct, or by a removable insert. First and second conductor layers are formed, each of which include plurality of disc windings arranged in an axial direction of the disc-wound coil. A spacer layer is formed between the first and second conductor layers to form a plurality of axially-extending passages. The cooling ducts are slid into the axially- extending passages so as to be disposed between the first and second conductor layers.
Abstract:
A protective coating system for application to exposed surfaces of a transformer core prevents corrosion of the core. The protective coating is suitable for use in industrial and marine environments where many factors impact the life of the transformer core. The protective coating comprises at least three coating layers. The first coating layer is an inorganic zinc silicate primer. The second coating layer is a polysiloxane. The third coating layer is a room temperature or high temperature vulcanizing silicone rubber. A silicone rubber sealant may be further applied to outer edge surfaces of the core.