Abstract:
An internal heating method for drying, gelling and final curing of epoxy resin insulation systems used for encapsulating dry type cast distribution transformer coils is disclosed. The internal method uses a Direct-Current (DC) power source to control and supply DC current to resistively heat the transformer coil encapsulated with a liquid resin under vacuum in a mold. DC current is applied to a given coil based on its conductor cross-sectional area and its epoxy resin quantity to achieve a specified temperature for drying, gelling and final curing. The temperature, controlled by DC resistive heating is maintained for a given period for each step.
Abstract:
An internal heating method for drying, gelling and final curing of epoxy resin insulation systems used for encapsulating dry type cast distribution transformer coils is disclosed. The internal method uses a Direct-Current (DC) power source to control and supply DC current to resistively heat the transformer coil encapsulated with a liquid resin under vacuum in a mold. DC current is applied to a given coil based on its conductor cross-sectional area and its epoxy resin quantity to achieve a specified temperature for drying, gelling and final curing. The temperature, controlled by DC resistive heating is maintained for a given period for each step.
Abstract:
The invention is directed to a transformer and a method of manufacturing the same, wherein the transformer has a cylindrical disc-wound coil that inc ludes a layer of cooling ducts disposed between first and second conductor l ayers. The first and second conductor layers each have a plurality of disc w indings arranged in an axial direction of the disc-wound coil. Each of the d isc windings includes a conductor wound into a plurality of concentric turns .
Abstract:
An internal heating method for drying, gelling and final curing of epoxy resin insulation systems used for encapsulating dry type cast distribution transformer coils is disclosed. The internal method uses a Direct-Current (DC) power source to control and supply DC current to resistively heat the transformer coil encapsulated with a liquid resin under vacuum in a mold. DC current is applied to a given coil based on its conductor cross-sectional area and its epoxy resin quantity to achieve a specified temperature for drying, gelling and final curing. The temperature, controlled by DC resistive heating is maintained for a given period for each step.
Abstract:
The invention is directed to a transformer and a method of manufacturing the same, wherein the transformer has a cylindrical disc-wound coil that includes a layer of cooling ducts disposed between first and second conductor layers. The first and second conductor layers each have a plurality of disc windings arranged in an axial direction of the disc-wound coil. Each of the disc windings includes a conductor wound into a plurality of concentric turns.
Abstract:
An internal heating method for drying, gelling and final curing of epoxy resin insulation systems used for encapsulating dry type cast distribution transformer coils is disclosed. The internal method uses a Direct-Current (DC) power source to control and supply DC current to resistively heat the transformer coil encapsulated with a liquid resin under vacuum in a mold. DC current is applied to a given coil based on its conductor cross-sectional area and its epoxy resin quantity to achieve a specified temperature for drying, gelling and final curing. The temperature, controlled by DC resistive heating is maintained for a given period for each step.
Abstract:
An internal heating method for drying, gelling and final curing of epoxy res in insulation systems used for encapsulating dry type cast distribution transformer coils is disclosed. The internal method uses a Direct-Current (D C) power source to control and supply DC current to resistively heat the transformer coil encapsulated with a liquid resin under vacuum in a mold. DC current is applied to a given coil based on its conductor cross-sectional ar ea and its epoxy resin quantity to achieve a specified temperature for drying, gelling and final curing. The temperature, controlled by DC resistive heatin g is maintained for a given period for each step.