Abstract:
The present invention relates to an apparatus for the generation, the distribution and/or the usage of electrical energy. The apparatus comprises a housing enclosing an insulating space and an electrically conductive part arranged in the insulating space, said insulating space containing a dielectric insulation medium,at least a portion of which being in the form of an insulation gas comprising an organofluorine compound. According to the invention, at least some of the components of the apparatus that are directly exposed to the insulation gas are made of a material which remains unaltered during exposure to the insulation gas for a period of more than 1 year at operational conditions and/or have a surface, at least a portion of which is devoid of any nucleophilic group reactive towards the organofluorine compound and/or reactive towards any degradation product thereof at operational conditions.
Abstract:
The present invention relates to an apparatus for the generation, the distribution or the usage of electrical energy, said apparatus comprising a housing enclosing an insulating space and an electrical component arranged in the insulating space. The insulating space contains a dielectric insulation gas comprising an organofluorine compound A. The apparatus further comprises a molecular sieve arranged such as to come into contact with the insulation gas. The molecular sieve has an average pore size y greater than the molecular size of at least one decomposition product of the organofluorine compound A generated during operation of the apparatus. The adsorption capability of the molecular sieve for organofluorine compound A is lower than for the at least one decomposition product. According to the invention, the apparatus further comprises at least one desiccant arranged such as to come into contact with the insulation gas.
Abstract:
The invention relates to a method for deriving at least one operating parameter P of a fluid-insulated electrical apparatus (1), in particular of gas-insulated switchgear (1). The operating parameter P is dependent on a dielectric breakdown strength E bd of an insulation fluid (10) of the electrical apparatus (1). The insulation fluid (10) comprises at least three components X, Y, and Z that are assigned to at least a first and a second component group A and B such that at least one component group comprises at least two components. The component groups A and B differ in their weighted average values of the molecular masses of the components in the respective component groups. Then, at least one quantity which is indicative of the concentration c A of the first component group A and of the concentration c B of the second component group B is determined from the insulation fluid (10), e.g. by measuring one or more measurement variables (p, p, T, λ, η, c s ) by means of one or more sensors (30). The operating parameter P is then derived using the at least one quantity.
Abstract:
A gas insulated type circuit breaker (1) comprises a housing (4) defining a gas volume for a dielectric insulation gas; a first nominal contact element (42) and a second nominal contact element (52) adapted for selectively carrying or interrupting a nominal current between them, wherein the first nominal contact element (42) is movable along an axis (2) of the circuit breaker, and the second nominal contact element (52) is fixed relative to the housing (4); a first arcing contact element (62) and a second arcing contact element (72) adapted for selectively carrying or interrupting an arcing current between them, wherein the first arcing contact element (62) and the second arcing contact element (72) are movable along the axis (2); a first gear (20) coupling the first nominal contact element (42) and the first arcing contact element (62) to each other such that for circuit breaking the first nominal contact element (42) and the first arcing contact element (62) are both moved in a first direction along the axis (2); and a second gear (30) coupling the second arcing contact element (72) to one of the first nominal contact element (42) and the first arcing contact element (62) such that for circuit breaking the second arcing contact element (72) moves in a second direction along the axis (2) opposite to a first direction.
Abstract:
The present invention relates to an electrical apparatus for generation, transmission, distribution and/or usage of electrical energy, comprising a housing enclosing an electrical apparatus interior space, at least a portion of of which forms at least one insulation space having an electrical component and containing a surrounding insulation medium comprising an amount of carbon dioxide m co2 · The insulation space is formed by at least one insulation space compartment, in which an adsorber for reducing or eliminating the amount of water m H20 and optionally further contaminants from the insulation medium is arranged. The amount of adsorber m ads arranged in the at least one insulation space compartment complies with the formulae (I) and (II).
Abstract:
Der gasisolierte Hochspannungs-Leistungsschalter (1) enthält ein Kompressions- (4) und ein Niederdruckvolumen (5) sowie ein die beiden Volumina (4,5) miteinander verbindendes Ventil (6), durch welches beim Schliessen des Schalters Isoliergas aus dem Niederdruckvolumen (5) ins Kompressionsvolumen (4) und beim Öffnen des Schalters oberhalb eines Schwellwerts des Gasdrucks Gas aus dem Kompressionsvolumen (4) im umgekehrter Richtung ins Niederdruckvolumen (5) strömt. Eine vereinfachte Ausführung des Schalters unter Einsparung von Bauteilen wird dadurch erreicht, dass in eine Ventilplatte (9) des Ventils (6) mindestens ein Loch (71) und mindestens eine einseitig gehaltene, in Abhängigkeit vom Druck des Isoliergases im Kompressionsvolumen (4) elastisch verbiegbare Blattfeder (7) eingeformt sind. Die Biegefeder (7) verschliesst beim Schliessen des Schalters das Loch (71) und gibt es beim Öffnen des Schalters frei, sobald der Druck des verdichteten Isoliergases im Kompressionsvolumen (4) den Wert des Gasdrucks im Niederdruckraum (5) um mindestens zwei bar übertrifft.
Abstract:
The present invention relates to a dielectric insulation medium comprising: a) sulphur hexafluoride (SF6) and/or tetrafluoro methane (CF4), in a mixture with b) at least one further component being an at least partially fluorinated fluoroketone.
Abstract:
The present invention relates to a dielectric insulation medium comprising a) a fluoroketone a) containing 5 carbon atoms, in a mixture with b) a dielectric insulation gas component b) different from the fluoroketone a), in particular air or an air component, the dielectric insulation medium, in particular the dielectric insulation gas, having a non-linearly increased dielectric strength that is larger than a sum of dielectric strengths of the gas components of the dielectric insulation medium.
Abstract:
The present invention relates to an electrical apparatus (2) for the generation, the distribution and/or the usage of electrical energy, the electrical apparatus (2) comprising a housing (4) enclosing an electrical apparatus interior space (5), at least a portion of the electrical apparatus interior space (5) forming an insulation space (6), in which an electrical component (8) is arranged and which contains an insulation medium surrounding the electrical component (8). The electrical apparatus (2) further comprises a contamination-reducing component (10) for reducing or eliminating at least one contaminant from the insulation space (6). According to the invention, the contamination-reducing component (10) is arranged in a contamination-reduction space (12) which is separated from the insulation space (6) by a semipermeable membrane (14).
Abstract:
The present invention relates to a process for providing a contamination-reducing(5)component to an electrical apparatus(1), said electrical apparatus (1) comprising a housing (2) enclosing an insulating space (3) and an electrical component (4) arranged in the insulating space(3), said insulating space (3) comprising an insulation medium which comprises or consists of carbon dioxide. The process comprises the steps of presaturating the contamination reducing component (5) with carbon dioxide before placing it inside the electrical apparatus (1).