Abstract:
An automated, continuous and random access analytical system, having apparatus and methodology capable of simultaneously performing multiple assays of liquid samples using different assay methodologies, and providing continuous and random access while performing a plurality of different assays on the same or different samples during the same time period, is disclosed. A method is also disclosed of operating an automated continuous and random access analytical system capable of simultaneously effecting multiple assays of a plurality of liquid samples wherein scheduling of various assays of the plurality of liquid samples is followed by creating a unit dose disposable and separately transferring a first liquid sample and reagents to a reaction vessel without initiation of an assay reaction sequence, followed by physical transfer of the unit dose disposable to a processing workstation, whereby a mixture of the unit dose disposable reagents and sample are achieved during incubation. The system is capable of performing more than one scheduled assay in any order, and assays where more than such scheduled assays are presented. The automated, continuous and random access analytical system is also capable of analyzing the incubated reaction mixtures independently and individually by at least two assay procedures.
Abstract:
An automated, continuous and random access analytical system (18), having apparatus and methodology capable of simultaneously performing multiple assays of liquid samples using different assay methodologies, and providing continuous and random access while performing a plurality of different assays on the same or different samples during the same time period, is disclosed. A method is also disclosed of operating an automated continuous and random access analytical system (18) capable of simultaneously effecting multiple assays of a plurality of liquid samples wherein scheduling of various assays of the plurality of liquid samples is followed by creating a unit dose disposable and separately transferring a first liquid sample (26) and reagents (30) to a reaction vessel (34) without initiation of an assay reaction sequence, followed by physical transfer of the unit dose disposable to a processing workstation (52), whereby a mixture of the unit dose disposable reagents and sample (34) are achieved during incubation. The system (18) is capable of performing more than one scheduled assay in any order, and assays where more than such scheduled assays are presented. The automated, continuous and random access analytical system (18) is also capable of analyzing the incubated reaction mixtures independently and individually by at least two assay procedures.
Abstract:
An automated, continuous and random access analytical system, having apparatus and methodology capable of simultaneously performing multiple assays of liquid samples using different assay methodologies, and providing continuous and random access while performing a plurality of different assays on the same or different samples during the same time period, is disclosed. A method is also disclosed of operating an automated continuous and random access analytical system capable of simultaneously effecting multiple assays of a plurality of liquid samples wherein scheduling of various assays of the plurality of liquid samples is followed by creating a unit dose disposable and separately transferring a first liquid sample (26), reagents (30) to a reaction vessel (34) without initiation of an assay reaction sequence, followed by physical transfer of the unit dose disposable (34) to a process work station, whereby a mixture of the unit dose disposable reagents and sample (34) are achieved during incubation. The system is capable of performing more than one scheduled assay in any order, and assays where more than such scheduled assays are presented. The automated, continuous and random access analytical system is also capable of analyzing the incubated reaction mixtures independently and individually by at least two assay procedures.
Abstract:
An automated, continuous and random access analytical system, havin apparatus and methodology capable of simultaneously performing multiple assays of liquid samples using different assay methodologies, and providing continuous and random access while performing a plurality of different assays on the same or different samples during the same time period, is disclosed. A method is also disclosed of operating an automated continuous and random access analytical system capable of simultaneously effecting multiple assays of a plurality of liquid samples wherein scheduling of various assays of the plurality of liquid samples is followed by creating a unit dose disposable and separately transferring a first liquid sample (26), reagents (30) to a reaction vessel (34) without initiation of an assay reaction sequence, followed by physical transfer of the unit dose disposable (34) to a process work station (46), whereby a mixture of the unit dose disposable reagents and sample (34) are achieved during incubation. The system is capable of performing more than one scheduled assay in any order, and assays where more than such scheduled assays are presented. The automated, continuous and random access analytical system is also capable of analyzing the incubated reaction mixtures independently and individually by at least two assay procedures.
Abstract:
A method for modifying a liquid assay reagent to provide prolonged homogeneity thereof, particularly where the liquid assay reagent comprises microparticles for performing a heterogeneous immunoassay, is provided wherein the addition of an inert material to a liquid assay reagent achieves neutral density to thereby prolong the homogeneity thereof for extended periods of time. A method for the automated agitation of assay reagents to maintain the homogeneity thereof with an automated, continuous and random access analytical instrument is also provided. The automated mixing is accomplished by a back and forth motion of a carousel onto which assay reagent containers or packs are mounted with asymmetric pauses which can be completed within a short period of time. The carousel acceleration, velocity, distance moved, and pause-asymmetry are optimized to provide rapid assay reagent resuspension without foaming or bubble formation. Accordingly, periodic removal of assay reagent packs by an operator in order to mix the reagents is not necessary.
Abstract:
A method for verifying that an assay methodology is properly performed that assay reagents employed possess the necessary potency for accurately performing such assay methodology, and whether or not test samples or assay reagents have been tampered with or are adulterated, is described. The method is performed by employing an assay verification sample, comprising a positive analyte component and the test sample under analysis, wherein the assay verification sample is analyzed employing the same assay reagents and essentially the same assay methodology employed to analyze the test sample. The method is particularly useful for performing heterogeneous immunoassays on an automated continuous and random access analytical system.
Abstract:
A plastic assay cuvette (506) having the desired optical properties for the analysis of a test sample or reaction mixture thereof, and a method for making such a plastic assay cuvette (506), are described. The optical properties of the plastic assay cuvette (506) are substantially the same as the optical properties of glass wherein low birefringence throughout the optical read region (516) thereof is provided. When used for the analysis of a test sample or reaction mixture thereof, such as in fluorescence polarization assays and absorbance assays, the plastic assay cuvette (506) provides accurate and reproducible disposable assay cuvette which can be used in place of conventional glass assay cuvettes.
Abstract:
A plastic assay cuvette (506) having the desired optical properties for the analysis of a test sample or reaction mixture thereof, and a method for making such a plastic assay cuvette (506), are described. The optical properties of the plastic assay cuvette (506) are substantially the same as the optical properties of glass wherein low birefringence throughout the optical read region (516) thereof is provided. When used for the analysis of a test sample or reaction mixture thereof, such as in fluorescence polarization assays and absorbance assays, the plastic assay cuvette (506) provides accurate and reproducible disposable assay cuvette which can be used in place of conventional glass assay cuvettes.
Abstract:
An automated, continuous and random access analytical system, having apparatus and methodology capable of simultaneously performing multiple assays of liquid samples using different assay methodologies, and providing continuous and random access while performing a plurality of different assays on the same or different samples during the same time period, is disclosed. A method is also disclosed of operating an automated continuous and random access analytical system capable of simultaneously effecting multiple assays of a plurality of liquid samples wherein scheduling of various assays of the plurality of liquid samples is followed by creating a unit dose disposable and separately transferring a first liquid sample and reagents to a reaction vessel without initiation of an assay reaction sequence, followed by physical transfer of the unit dose disposable to a processing workstation, whereby a mixture of the unit dose disposable reagents and sample are achieved during incubation. The system is capable of performing more than one scheduled assay in any order, and assays where more than such scheduled assays are presented. The automated, continuous and random access analytical system is also capable of analyzing the incubated reaction mixtures independently and individually by at least two assay procedures.
Abstract:
An automated, continuous and random access analytical system, having apparatus and methodology capable of simultaneously performing multiple assays of liquid samples using different assay methodologies, and providing continuous and random access while performing a plurality of different assays on the same or different samples during the same time period, is disclosed. A method is also disclosed of operating an automated continuous and random access analytical system capable of simultaneously effecting multiple assays of a plurality of liquid samples wherein scheduling of various assays of the plurality of liquid samples is followed by creating a unit dose disposable and separately transferring a first liquid sample (26), reagents (30) to a reaction vessel (34) without initiation of an assay reaction sequence, followed by physical transfer of the unit dose disposable (34) to a process work station, whereby a mixture of the unit dose disposable reagents and sample (34) are achieved during incubation. The system is capable of performing more than one scheduled assay in any order, and assays where more than such scheduled assays are presented. The automated, continuous and random access analytical system is also capable of analyzing the incubated reaction mixtures independently and individually by at least two assay procedures.