Abstract:
A communication system includes a SLIC device and a SLAC device. The SLIC device and the SLAC device cooperate to control the power level provided to a subscriber line. The SLAC device includes a digital control circuit which receives a parameter signal indicative of a first parameter of the electrical power. The digital control circuit provides a digital control signal to the SLIC device in response to a sample digital control signal and the digital parameter signal. Preferably, the digital parameter signal relates to a sensed current signal and the sample digital control signal relates to a desired voltage signal. The digital control circuit can be implemented hardware or software.
Abstract:
DC level control for an electronic telephone line card which filters the DC component from the input audio signal, determines the gain setting of the transmit path, develops a DC adjust voltage opposite to that of the DC shift component and subtracts the DC adjust voltage to the input voltage to cancel the DC shift component. A quantized, discontinuous feedback path is implemented to respond only to DC shifts so the AC operation remains substantially unaffected. Such discontinuous feedback eliminates stability and impedance matching problems introduced with continuous feedback solutions. A DC control circuit according to the present invention includes a low pass filter for detecting DC shifts, a quantizer for asserting an incremental signal, a threshold detector for activating adjustment functions, and an accumulator for developing the DC adjust voltage by incremental steps. A long term low pass filter and reset circuit resets the accumulator to cancel residual DC adjust voltages which might otherwise reduce the dynamic range of the telephone line transmit path.
Abstract:
DC level control for an electronic telephone line card which filters the DC component from the input audio signal, determines the gain setting of the transmit path, develops a DC adjust voltage opposite to that of the DC shift component and subtracts the DC adjust voltage to the input voltage to cancel the DC shift component. A quantized, discontinuous feedback path is implemented to respond only to DC shifts so the AC operation remains substantially unaffected. Such discontinuous feedback eliminates stability and impedance matching problems introduced with continuous feedback solutions. A DC control circuit according to the present invention includes a low pass filter for detecting DC shifts, a quantizer for asserting an incremental signal, a threshold detector for activating adjustment functions, and an accumulator for developing the DC adjust voltage by incremental steps. A long term low pass filter and reset circuit resets the accumulator to cancel residual DC adjust voltages which might otherwise reduce the dynamic range of the telephone line transmit path.
Abstract:
A communication system includes a SLIC device and a SLAC device. The SLIC device and the SLAC device cooperate to control the power level provided to a subscriber line. The SLAC device includes a digital control circuit which receives a parameter signal indicative of a first parameter of the electrical power. The digital control circuit provides a digital control signal to the SLIC device in response to a sample digital control signal and the digital parameter signal. Preferably, the digital parameter signal relates to a sensed current signal and the sample digital control signal relates to a desired voltage signal. The digital control circuit can be implemented hardware or software.