Abstract:
A semiconductor manufacturing process for producing MOS integrated circuits having two gate oxide thicknesses. A first gate dielectric is formed on an upper surface of a semiconductor substrate. Thereafter, a masking layer is deposited on the first dielectric layer and patterned such that the first dielectric layer is exposed above a second region of the semiconductor substrate. The semiconductor wafer is then subjected to a thermal oxidation process such that a second gate dielectric is formed within the exposed second region of the semiconductor substrate. The second gate dielectric preferably has an oxide thickness that is unequal to the oxide thickness of the first gate dielectric layer. Thereafter, gate structures and source/drain structures are fabricated such that the integrated circuit includes a first transistor having a first gate dielectric thickness and a second transistor having a second gate dielectric thickness. In this manner, the integrated circuit can include selected transistors having a thinner gate dielectric for improving the performance of these selected transistors. In one embodiment, the n-channel transistors in a CMOS integrated circuit have a thinner gate oxide than the p-channel devices.
Abstract:
A semiconductor fabrication process for fabricating MOS transistors in which dielectric spacer structures are used prior to gate formation to reduce the gate length below the minimum feature size resolvable by the photolithography equipment. A semiconductor substrate having a channel region laterally disposed between a pair of source/drain regions is provided. A dielectric stack is formed on an upper surface of the semiconductor substrate and patterned to expose on upper surface of a spacer region of the semiconductor substrate. The spacer region includes the channel region and peripheral portions of the pair of source/drain regions proximal to the channel region. The patterning of the dielectric stack results in the formation of a pair of opposing sidewalls in the dielectric stack. Thereafter, a pair of first spacer structures are formed on the pair of opposing sidewalls such that the pair of first spacer structures cover or shadow the peripheral portions of the source/drain regions and such that an upper surface of the channel region is exposed. A gate structure is then formed on the upper surface of the channel region. The gate structure is laterally disposed between the pair of first spacer structures. A first dopant species is then introduced into the source/drain regions of the semiconductor substrate.
Abstract:
A selectively doped MOS transistor channel includes a deep impurity distribution and shallow impurity distribution. The deep impurity distribution is formed within high energy implant with an impurity of conductivity type opposite to the conductivity type of the source/drain regions of the transistor. In the n-channel regions, the deep impurity distribution preferably includes boron ions. The deep impurity distribution acts as a channel stop such that adjacent source/drain regions of the like type transistors are not inadvertently coupled during circuit operation. The shallow impurity distribution acts as a threshold implant by precisely controlling the doping of the transistor channel in the vicinity of the silicon oxide interface. The peak concentration of the shallow impurity distribution is located at a depth below the silicon surface which is greater than a depth typically associated with a thresold adjust implant. Because the impurity concentration of the shallow impurity distribution drops off rapidly from the peak concentration value, the concentration at the upper surface of the silicon substrate is not significantly greater than the doping of the silicon substrate itself. The light doping in the channel region of the transistor results in a substantially reduced threshold voltage for the transistor. Preferably, the threshold voltage of both the n-channel and p-channel devices has an absolute value of approximately 250 Mv. The lower threshold voltage translates into a higher IDsat when the transistor is operated under normal conditions (e.g., VGs = 3 volts, VDs = 3 volts, and VSb = 0 volts.)
Abstract:
The method for fabrication of a non-symmetrical IGFET of the present invention includes providing a semiconductor substrate having an insulating film and a gate material. A first portion of the gate material overlying a first region of the semiconductor substrate is removed forming a first sidewall of a gate electrode. A dopant is implanted into the first region after forming the first sidewall. After the first region is implanted, a second portion of the gate material overlying a second region of the semiconductor substrate is then removed forming a second sidewall of the gate electrode. A dopant is implanted into the second region after forming the second sidewall. Spacers are formed adjacent to each of the sidewalls of the gate electrode. Then, a dopant is implanted into portions of the first and second regions of the semiconductor substrate outside the gate electrode and the spacers. In one embodiment of the invention, the first region is a heavily doped source region and the second region is a lightly doped drain region. In another embodiment of the present invention the first region is a lightly doped drain region and the second region is a heavily doped source region. In both embodiments, a part of the lightly doped drain region is retained beneath a spacer.
Abstract:
A method of fabricating a transistor. A dielectric layer is formed on an upper surface of a semiconductor substrate. A photoresist layer is then deposited on a dielectric layer and patterned with a photolithography exposure device to expose a region of the dielectric layer having a lateral dimension approximately equal to the minimum feature size resolvable by the photolithography exposure device. The exposed region of the dielectric layer is then removed to form a trench in the dielectric layer having opposed dielectric sidewalls and to expose a channel region of the semiconductor substrate having a lateral dimension approximately equal to the minimum feature size. First and second spacer structures are then formed on the respective dielectric sidewalls. The spacer structures shadow peripheral portions of the exposed channel region. A channel dielectric is then formed between the first and second spacer structures. An outer surface of the spacer structure is then removed to expose peripheral portions of the channel region. A first concentration of a first impurity is then introduced into the peripheral portions of the semiconductor substrate and the channel dielectric is thereafter removed. A gate dielectric is then formed on the semiconductor substrate and a conductive gate structure, such as polysilicon, is formed over the gate dielectric.
Abstract:
A method of forming a self-aligned filed oxide isolation structure without using silicon nitride. The method comprises forming a dielectric on an upper surface of a semiconductor substrate. The upper surface of the semiconductor substrate comprises an active region and an isolation region laterally adjacent to each other. A photoresist layer is patterned on top of the implant dielectric to expose regions of the implant dielectric over the active region. Nitrogen is then implanted into the active region through the implant dielectric. Nitrogen is preferably introduced into semiconductor substrate in an approximate atomic concentration of 0.5 to 2.0 percent. After the nitrogen has been implanted into a semiconductor substrate, the photoresist layer is stripped and the implant dielectric is removed. The wafer is then thermally oxidized such that a field oxide having a first thickness is grown over the isolation region and a thin oxide having a second thickness is grown over the active region. The presence of the nitrogen within the semiconductor substrate retards the oxidation rate of the silicon in the active region such that the thickness of the thin oxide is substantially less than the thickness of the thermal oxide. In a presently preferred embodiment, the field oxide has a thickness of 2,000 to 8,000 angstroms while the thin oxide has a thickness of less than 300 angstroms.
Abstract:
A semiconductor process for producing two gate oxide thicknesses within an integrated circuit in which a semiconductor substrate having a first region and a second region is provided. The first region and the second region are laterally displaced with respect to one another. A nitrogen species impurity distribution is then introduced into the first region of the semiconductor substrate. Thereafter, a gate dielectric layer is grown on an upper surface of the semiconductor substrate. The gate dielectric has a first thickness over the first region of the semiconductor substrate and a second thickness over the second region of the semiconductor substrate. The first thickness is less than the second thickness. In a CMOS embodiment of the present invention, the first region of the semiconductor substrate comprises p-type silicon while the second substrate region comprises n-type silicon. Preferably, the step of introducing the nitrogen species impurity distribution into the semiconductor substrate is accomplished by thermally oxidizing the first substrate region in a nitrogen bearing ambient. In a presently preferred embodiment, the nitrogen bearing ambient includes N2O, NH3, O2 and HCl in an approximate ratio of 60:30:7:3. In alternative embodiments the nitrogen bearing ambient includes NO, O2 and HCl in an approximate ratio of 90:7:3 or N2O, O2 and HCl in a approximate ratio of 90:7:3. The introduction of the nitrogen species impurity into first substrate region (102) may alternatively be accomplished with rapid thermal anneal processing.
Abstract:
A method for isolating semiconductor devices comprising providing a semiconductor substrate. The semiconductor substrate includes laterally displaced source/drain regions and channel regions. First and second laterally displaced MOS transistors are formed partially within the semiconductor substrate. The first and second transistors have a common source/drain region. An isolation trench is formed through the common source/drain region and the trench is filled with a trench dielectric material such that the common source/drain region is divided into electrically isolated first and second source/drain regions whereby the first transistor is electrically isolated from the second transistor.
Abstract:
After growth of a thin oxide on a silicon semiconductor body, and formation of a gate thereover, a blanket layer of oxide is deposited over the resulting structure, this oxide layer having, as measured from the surface of the silicon body, relatively thick regions adjacent the sides of the gate and relatively thin regions extending therefrom. Upon implant of ions, the relatively thick regions block ions from passing therethrough into the semiconductor body, while the relatively thin regions allow passage of ions therethrough into the body. After drivein of the ions, the thick layer of oxide is isotopically etched to take a substantially uniform layer therefrom over the entire surface of the thick oxide layer, so that the thick regions thereof are reduced in width. Upon a subsequent ion implant step, the thick regions, now reduced in width from the sides of the gate, block passage of ions therethrough, while the thin regions allow ions therethrough into the silicon body. This process may be continued as chosen to form desired source and drain profile.
Abstract:
A reticle (130) provides an image pattern and compensates for a lens error in a photolithographic system. The reticle is structurally modified using image displacement data indicative of the lens error. The reticle can be structurally modified by adjusting the configuration (or layout) of radiation-transmitting regions (132, 134) for instance by adjusting a chrome pattern on the top surface of a quartz base. Alternatively, the reticle can be structurally modified by adjusting the curvature of the reticle, for instance by providing a chrome pattern on the top surface of a quartz base and grinding away portions of the bottom surface of the quartz base. The image displacement data may also vary as a function of lens heating so that the reticle compensates for lens heating associated with the reticle pattern.