Abstract:
Removal compositions and processes for removing at least one metal impurity from a substrate (e.g., a silicon-containing substrate) having same thereon. Advantageously, the compositions remove metal impurities, e.g., iron, from silicon-containing substrates used as semiconductor devices and solar cell devices.
Abstract:
Anhydrous mononuclear Lewis base adducted tris(β-diketonato) bismuth complexes, useful as precursors for chemical vapor deposition of bismuth, for producing Bi-containing films of significantly improved stoichiometry, morphology and functional character, as compared to films obtained from dinuclear tris(β-diketonato) bismuth complexes of the prior art.
Abstract:
A solvent composition useful for liquid delivery MOCVD, comprising toluene and a Lewis base, wherein toluene is present at a concentration of from about 75% to about 98% by volume, based on the total volume of toluene and the Lewis base. Such solvent composition is usefully employed to dissolve or suspend precursors therein for liquid delivery MOCVD, e.g., MOCVD of ferroelectric material films such as SBT.
Abstract:
A post-etch residue cleaning composition for cleaning ashed or unashed aluminum/SiN/Si post-etch residue from small dimensions on semiconductor substrates. The cleaning composition contains supercritical CO 2 (SCCO2), alcohol, fluoride source, an aluminum ion complexing agent and, optionally, corrosion inhibitor. Such cleaning composition overcomes the intrinsic deficiency of SCCO2 as a cleaning reagent, viz., the non-polar character of SCCO2 and its associated inability to solubilize species such as inorganic salts and polar organic compounds that are present in the post-etch residue and that must be removed from the semiconductor substrate for efficient cleaning. The cleaning composition enables damage-free, residue-free cleaning of substrates having ashed or unashed aluminum/SiN/Si post-etch residue thereon.
Abstract:
A solvent composition useful for liquid delivery MOCVD, comprising toluene and a Lewis base, wherein toluene is present at a concentration of from about 75% to about 98% by volume, based on the total volume of toluene and the Lewis base. Such solvent composition is usefully employed to dissolve or suspend precursors therein for liquid delivery MOCVD, e.g., MOCVD of ferroelectric material films such as SBT.
Abstract:
An indium precursor composition having utility for incorporation of indium in a microelectronic device structure, e.g., as an indium-containing film on a device substrate by bubbler or liquid delivery MOCVD techniques, or as a dopant species incorporated in a device substrate by ion implantation techniques. The precursor composition includes a precursor of the formula R1R2InL wherein: R1 and R2 may be same or different and are independently selected from C6-C10 aryl, C6-C10 fluoroaryl, C6-C10 perfluoroaryl, C1-C6 alkyl, C1-C6 fluoroalkyl, or C1-C6 perfluoroalkyl; and L is beta -diketonato or carboxylate. Indium-containing metal films may be formed on a substrate, such as indium-copper metallization, and shallow junction indium ion-implanted structures may be formed in integrated circuitry, using the precursors of the invention.