Abstract:
Removal compositions and processes for removing at least one metal impurity from a substrate (e.g., a silicon-containing substrate) having same thereon. Advantageously, the compositions remove metal impurities, e.g., iron, from silicon-containing substrates used as semiconductor devices and solar cell devices.
Abstract:
Removal compositions and processes for removing at least one material layer from a rejected microelectronic device structure having same thereon. The removal composition preferably includes hydrofluoric acid. The composition achieves substantial removal of the material(s) to be removed while not damaging the layers to be retained, for reclaiming, reworking, recycling and/or reuse of said structure. Processes include the monitoring and modifying said compositions.
Abstract:
A method and mineral acid-containing compositions for removing bulk and/or hardened photoresist material from microelectronic devices have been developed. The mineral acid-containing composition includes at least one mineral acid, at least one sulfur-containing oxidizing agent, and optionally at least one metal ion-containing catalyst. The mineral acid-containing compositions effectively remove the hardened photoresist material while not damaging the underlying silicon-containing layer(s).
Abstract:
Processes for recycling printed wire boards using environmentally-friendly compositions, wherein electronic components, precious metals and base metals may be collected for reuse and recycling.
Abstract:
Processes for recycling printed wire boards using environmentally-friendly compositions, wherein electronic components, precious metals and base metals may be collected for reuse and recycling.
Abstract:
COMPOSITION AND METHOD FOR REMOVING ION-IMPLANTED PHOTORESISTA method and mineral acid-containing compositions for removing bulk and/or hardened photoresist material from microelectronic devices have been developed. The mineral acid-containing composition includes at least one mineral acid, at least one sulfur-containing oxidizing agent, and optionally at least one metal ion-containing catalyst. The mineral acid-containing compositions effectively remove the hardened photoresist material while not damaging the underlying silicon-containing layer(s).Fig. IA
Abstract:
A post-etch residue cleaning composition for cleaning ashed or unashed aluminum/SiN/Si post-etch residue from small dimensions on semiconductor substrates. The cleaning composition contains supercritical CO 2 (SCCO2), alcohol, fluoride source, an aluminum ion complexing agent and, optionally, corrosion inhibitor. Such cleaning composition overcomes the intrinsic deficiency of SCCO2 as a cleaning reagent, viz., the non-polar character of SCCO2 and its associated inability to solubilize species such as inorganic salts and polar organic compounds that are present in the post-etch residue and that must be removed from the semiconductor substrate for efficient cleaning. The cleaning composition enables damage-free, residue-free cleaning of substrates having ashed or unashed aluminum/SiN/Si post-etch residue thereon.
Abstract:
Drying of patterned wafers is achieved in a manner effecting removal of water from the patterned wafers without collapse or deterioration of the pattern structures thereof. The drying is carried out in one aspect of the invention with a composition containing supercritical fluid, and at least one water-reactive agent that chemically reacts with water to form reaction product(s) more soluble in the supercritical fluid than water. Various methodologies are described for use of supercritical fluids to dry patterned wafers, which avoid the (low water solubility) deficiency of supercritical fluids such as supercritical CO2.
Abstract:
A method and mineral acid-containing compositions for removing bulk and/or hardened photoresist material from microelectronic devices have been developed. The mineral acid-containing composition includes at least one mineral acid, at least one sulfur-containing oxidizing agent, and optionally at least one metal ion-containing catalyst. The mineral acid-containing compositions effectively remove the hardened photoresist material while not damaging the underlying silicon-containing layer(s).