Abstract:
A non-woven mat useful for a wide variety of purposes, including forming reinforced resin products, is produced in a manner having different specific uses of, and advantages over, conventional chopped strand mats and conventional glass tissue. The mat is preferably made by the foam process (but may be made by the liquid process), and at speeds well in excess of 60 m./min., and has a substantially uniform construction even when low density (e.g. 100 g/m or less). At least 20 % (preferably at least 85 %) of the fibers are in fiber bundles with between 5-450 fibers/bundle. The fibers (typically at least 85 %) have a length between 5-100 mm, preferably 7-50 mm, substantially the same as the length of the fiber bundle they are in. The fibers are preferably held in the bundles by substantially non-water soluble sizing, such as epoxy resin or PVOH. The fibers in the bundles typically have diameters of approximately 7-500 microns, preferably about 7-35 microns. The bundles may comprise at least 10 % reinforcing fibers, such as glass, aramid or acrylic.
Abstract:
The present invention relates to a method and apparatus for foam forming, wherein fibrous foam suspension is introduced from the head box (78, 178) of a production machine to the web forming section thereof. At least one solid material is mixed into the foam in the head box (78, 178). The method and th e apparatus of the invention are particularly suitable for manufacturing vario us web-like products of cellulose, glass fibre, aramide, sisal, or other corresponding fibre material.
Abstract:
A non-woven mat useful for a wide variety of purposes, including forming reinforced resin products, is produced in a manner having different specific uses of, and advantages over, conventional chopped strand mats and conventional glass tissue. The mat is preferably made by the foam process (but may be made by the liqui d process), and at speeds well in excess of 60 m./min., and has a substantially uniform construction even when low density (e.g. 100 g/m2 or less). At least 20 % (preferably at least 85 %) of the fibers are in fiber bundles with between 5-450 fibers/bundle. The fibers (typically at least 85 %) have a length between 5-100 mm, preferably 7-50 mm, substantially the same as the length of the fiber bundle they are in. The fibers are preferably held in the bundles by substantially non-water soluble sizing, such as epoxy resin or PVOH. The fibers in the bundles typically have diameters of approximately 7-500 microns, preferably about 7-35 microns. The bundles m ay comprise at least 10 % reinforcing fibers, such as glass, aramid or acrylic.
Abstract:
A non-woven mat useful for a wide variety of purposes, including forming reinforced resin products, is produced in a manner having different specific uses of, and advantages over, conventional chopped strand mats and conventional glass tissue. The mat is preferably made by the foam process (but may be made by the liquid process), and at speeds well in excess of 60 m./min., and has a substantially uniform construction even when low density (e.g. 100 g/m2 or less). At least 20% (preferably at least 85%) of the fibers are in fiber bundles with between 5-450 fibers/bundle. The fibers (typically at least 85%) have a length between 5-100 mm, preferably 7-50 mm, substantially the same as the length of the fiber bundle they are in. The fibers are preferably held in the bundles by substantially non-water soluble sizing, such as epoxy resin or PVOH. The fibers in the bundles typically have diameters of approximately 7-500 microns, preferably about 7-35 microns. The bundles may comprise at least 10% reinforcing fibers, such as glass, aramid or acrylic.
Abstract:
A non-woven mat useful for a wide variety of purposes, including forming reinforced resin products, is produced in a manner having different specific uses of, and advantages over, conventional chopped strand mats and conventional glass tissue. The mat is preferably made by the foam process (but may be made by the liquid process), and at speeds well in excess of 60 m./min., and has a substantially uniform construction even when low density (e.g. 100 g/m2 or less). At least 20% (preferably at least 85%) of the fibers are in fiber bundles with between 5-450 fibers/bundle. The fibers (typically at least 85%) have a length between 5-100 mm, preferably 7-50 mm, substantially the same as the length of the fiber bundle they are in. The fibers are preferably held in the bundles by substantially non-water soluble sizing, such as epoxy resin or PVOH. The fibers in the bundles typically have diameters of approximately 7-500 microns, preferably about 7-35 microns. The bundles may comprise at least 10% reinforcing fibers, such as glass, aramid or acrylic.
Abstract:
The present invention relates to a method and apparatus for foam forming, wherein fibrous foam suspension is introduced from the head box ( 78, 178 ) of a production machine to the web forming section thereof. At least one solid material is mixed into the foam in the head box ( 78, 178 ). The method and the apparatus of the invention are particularly suitable for manufacturing various web-like products of cellulose, glass fiber, aramide, sisal, or other corresponding fibre material.
Abstract:
The present invention relates to a method and apparatus for foam forming, wherein fibrous foam suspension is introduced from the head box ( 78, 178 ) of a production machine to the web forming section thereof. At least one solid material is mixed into the foam in the head box ( 78, 178 ). The method and the apparatus of the invention are particularly suitable for manufacturing various web-like products of cellulose, glass fiber, aramide, sisal, or other corresponding fibre material.
Abstract:
A non-woven mat useful for a wide variety of purposes, including forming reinforced resin products, is produced in a manner having different specific uses of, and advantages over, conventional chopped strand mats and conventional glass tissue. The mat is preferably made by the foam process (but may be made by the liquid process), and at speeds well in excess of 60 m./min., and has a substantially uniform construction even when low density (e.g. 100 g/m2 or less). At least 20% (preferably at least 85%) of the fibers are in fiber bundles with between 5-450 fibers/bundle. The fibers (typically at least 85%) have a length between 5-100 mm, preferably 7-50 mm, substantially the same as the length of the fiber bundle they are in. The fibers are preferably held in the bundles by substantially non-water soluble sizing, such as epoxy resin or PVOH. The fibers in the bundles typically have diameters of approximately 7-500 microns, preferably about 7-35 microns. The bundles may comprise at least 10% reinforcing fibers, such as glass, aramid or acrylic.
Abstract:
The present invention relates to a method and apparatus for foam forming, wherein fibrous foam suspension is introduced from the head box ( 78, 178 ) of a production machine to the web forming section thereof. At least one solid material is mixed into the foam in the head box ( 78, 178 ). The method and the apparatus of the invention are particularly suitable for manufacturing various web-like products of cellulose, glass fiber, aramide, sisal, or other corresponding fibre material.
Abstract:
The present invention relates to a method and apparatus for foam forming, wherein fibrous foam suspension is introduced from the head box ( 78, 178 ) of a production machine to the web forming section thereof. At least one solid material is mixed into the foam in the head box ( 78, 178 ). The method and the apparatus of the invention are particularly suitable for manufacturing various web-like products of cellulose, glass fiber, aramide, sisal, or other corresponding fibre material.