Abstract:
A heat treatable aluminum alloy for shaped castings includes from about 3.5-5.5 % Zn, from about 1-1.5 % Mg, less than about 1 % Si, less than about 0.30 % Mn, and less than about 0.3 % Fe and other incidental impurities.
Abstract:
The present application discloses wrought 2xxx Al—Li alloy products that are work insensitive. The wrought aluminum alloy products generally include from about 2.75 wt. % to about 5.0 wt. % Cu, from about 0.2 wt. % to about 0.8 wt. % Mg, where the ratio of copper-to-magnesium ratio (Cu/Mg) in the aluminum alloy is in the range of from about 6.1 to about 17, from about 0.1 wt. % to 1.10 wt. % Li, from about 0.3 wt. % to about 2.0 wt. % Ag, from 0.50 wt. % to about 1.5 wt. % Zn, up to about 1.0 wt. % Mn, the balance being aluminum, optional incidental elements, and impurities. The wrought aluminum alloy products may realize a low strength differential and in a short aging time due to their work insensitive nature.
Abstract:
New aluminum casting alloys having 8.5 - 9.5 wt. % silicon, 0.8 - 2.0 wt. % copper (Cu), 0.20 - 0.53 wt. % magnesium (Mg), and 0.35 to 0.8 wt. % manganese are disclosed. The alloy may be solution heat treated, treated in accordance with T5 tempering and/or artificially aged to produce castings, e.g., for cylinder heads and engine blocks. In one embodiment, the castings are made by high pressure die casting.
Abstract:
New Al-Li alloy bodies and methods of producing the same are disclosed. The new Al-Li alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new Al-Li alloy bodies may realize improved strength and other properties.
Abstract:
New Al-Li alloy bodies and methods of producing the same are disclosed. The new Al-Li alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new Al-Li alloy bodies may realize improved strength and other properties.
Abstract:
Decorative shape cast products and methods for producing the same are described. In one embodiment, the decorative shape cast products are produced from an Al-Ni or Al-Ni-Mn alloy, with a tailored microstructure to facilitate production of anodized decorative shape cast product having the appropriate finish and mechanical properties.
Abstract:
The invention provides a 2000 series aluminum alloy having enhanced damage tolerance, the alloy consisting essentially of about 3.0-4.0 wt% copper; about 0.4-1.1 wt% magnesium; up to about 0.8 wt% silver; up to about 1.0 wt% Zn; up to about 0.25 wt% Zr; up to about 0.9 wt% Mn; up to about 0.5 wt% Fe; and up to about 0.5 wt% Si, the balance substantially aluminum, incidental impurities and elements, said copper and magnesium present in a ratio of about 3.6-5 parts copper to about 1 part magnesium. The alloy is suitable for use in wrought or cast products including those used in aerospace applications, particularly sheet or plate structural members, extrusions and forgings, and provides an improved combination of strength and damage tolerance.
Abstract:
The invention provides a 2000 series aluminum alloy having enhanced damage tolerance, the alloy consisting essentially of about 3.0-4.0 wt% copper; about 0.4-1.1 wt% magnesium; up to about 0.8 wt% silver; up to about 1.0 wt% Zn; up to about 0.25 wt% Zr; up to about 0.9 wt% Mn; up to about 0.5 wt% Fe; and up to about 0.5 wt% Si, the balance substantially aluminum, incidental impurities and elements, said copper and magnesium present in a ratio of about 3.6-5 parts copper to about 1 part magnesium. The alloy is suitable for use in wrought or cast products including those used in aerospace applications, particularly sheet or plate structural members, extrusions and forgings, and provides an improved combination of strength and damage tolerance.
Abstract:
New 7xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 7xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 7xxx aluminum alloy bodies may realize improved strength and other properties.