Abstract:
PROBLEM TO BE SOLVED: To produce an aluminum alloy rolled thin sheet product having the combination of improved fatigue crack growing resistance, improved strength and fracture toughness and useful for the use for aerospace such as the airframe of aircraft and to provide its production method. SOLUTION: This aluminum alloy rolled thin sheet product has a microstructure specified by crystal grains having the average aspect ratio of the average length to width higher than about 4:1. By the control of the alloy composition, the limitation of the parameters in rolling and heat treatment, their combination or the like respectively as for an aluminum-copper-based alloy, an aluminum-magnesium-based alloy, an aluminum-magnesium-silicon-based alloy and an aluminum-zinc-based alloy, the prescribed aspect ratio, the microstructure having high anisotropy and improved quality characteristics are realized. More concretely, for developing a desired amount of precipitates, the composition of the alloy, the rolling method and the heat treating method are controlled.
Abstract:
A process for improving 6XXX alloys, such as 6013, preferably includes heating, hot rolling, inter-rolling thermal treatment at a very high temperature such as 1020 DEG F or more, again hot rolling (with or without subsequent continuous hot rolling or cold rolling or both), solution heat treating and artificial aging. The initial heating, inter-rolling, thermal treatment and solution treatment, especially the latter two, are carried out at very high temperatures such as 1030 DEG F. Each aforesaid hot rolling stage produces substantial metal thickness reduction. The improved sheet or plate product has a substantially reduced occurrence of reduced density features revealed in scanning electron microscope examination at 500X and exhibits improved (reduced) fatigue crack growth rate providing an advantage in aerospace applications such as fuselage skin, especially fuselage belly skin.
Abstract:
Metal sheets and plates having friction-reducing textured surfaces and methods of manufacturing these metal sheets and plates are disclosed herein. In an embodiment, there is provided a transportation vessel that includes at least one metal product having at least one surface that is substantially grooved, wherein the substantially grooved surface forms a riblet topography, the riblet topography including a multiplicity of adjacent permanently rolled longitudinal riblets running along at least a part of the surface, and wherein the riblet topography is coated with at least one coating sufficiently designed and applied to preserve the riblet topography. In an embodiment, the multiplicity of adjacent permanently rolled longitudinal riblets results in a friction-reducing textured surface. In an embodiment, metal product is used in fabricating at least a portion of an aircraft. In an embodiment, metal product is used in fabricating at least a portion of a rotor blade.
Abstract:
The invention provides a 2000 series aluminum alloy having enhanced damage tolerance, the alloy consisting essentially of about 3.0-4.0 wt % copper; about 0.4-1.1 wt % magnesium; up to about 0.8 wt % silver; up to about 1.0 wt % Zn; up to about 0.25 wt % Zr; up to about 0.9 wt % Mn; up to about 0.5 wt % Fe; and up to about 0.5 wt % Si, the balance substantially aluminum, incidental impurities and elements, said copper and magnesium present in a ratio of about 3.6-5 parts copper to about 1 part magnesium. The alloy is suitable for use in wrought or cast products including those used in aerospace applications, particularly sheet or plate structural members, extrusions and forgings, and provides an improved combination of strength and damage tolerance.
Abstract:
There is claimed an aerospace alloy having improved corrosion resistance performance, particularly intergranular corrosion resistance. The alloy consisting essentially of: about 0.6-1.15 wt. % silicon, about 0.6-1.0 wt. % copper, about 0.8-1.2 wt. % magnesium, about 0.55-0.86 wt. % zinc, less than about 0.1 wt. % manganese, about 0.2-0.3 wt. % chromium, the balance aluminum, incidental elements and impurities. While it is preferably made into sheet or plate product forms, it can also be extruded. Products made from this alloy exhibit at least about 5% greater yield strength and about 45% or greater resistance to intergranular corrosion attack than their 6013-T6 counterparts, as measured by average depth of corrosion after 24 hours exposure to an aqueous NaCl-H2O2 solution per ASTM Standard G110 (1992).
Abstract:
There is claimed an aerospace alloy having improved corrosion resistance performance, particularly intergranular corrosion resistance. The alloy consisting essentially of: about 0.6-1.15 wt. % silicon, about 0.6-1.0 wt. % copper, about 0.8-1.2 wt. % magnesium, about 0.55-0.86 wt. % zinc, less than about 0.1 wt. % manganese, about 0.2-0.3 wt. % chromium, the balance aluminum, incidental elements and impurities. While it is preferably made into sheet or plate product forms, it can also be extruded. Products made from this alloy exhibit at least about 5% greater yield strength and about 45% or greater resistance to intergranular corrosion attack than their 6013-T6 counterparts, as measured by average depth of corrosion after 24 hours exposure to an aqueous NaCl-H2O2 solution per ASTM Standard G110 (1992).
Abstract:
A process for improving 6XXX alloys, such as 6013, preferably includes heating, hot rolling, inter-rolling thermal treatment at a very high temperature such as 1020 ~F or more, again hot rolling (with or without subsequent continuous hot rolling or cold rolling or both), solution heat treating and artificial aging. The initial heating, inter-rolling, thermal treatment and solution treatment, especially the latter two, are carried out at very high temperatures such as 1030 ~F. Each aforesaid hot rolling stage produces substantial metal thickness reduction. The improved sheet or plate product has a substantially reduced occurrence of reduced density features revealed in scanning electron microscope examination at 500X and exhibits improved (reduced) fatigue crack growth rate providing an advantage in aerospace applications such as fuselage skin, especially fuselage belly skin .
Abstract:
The invention provides a 2000 series aluminum alloy having enhanced damage tolerance, the alloy consisting essentially of about 3.0-4.0 wt% copper; about 0.4-1.1 wt% magnesium; up to about 0.8 wt% silver; up to about 1.0 wt% Zn; up to about 0.25 wt% Zr; up to about 0.9 wt% Mn; up to about 0.5 wt% Fe; and up to about 0.5 wt% Si, the balance substantially aluminum, incidental impurities and elements, said copper and magnesium present in a ratio of about 3.6-5 parts copper to about 1 part magnesium. The alloy is suitable for use in wrought or cast products including those used in aerospace applications, particularly sheet or plate structural members, extrusions and forgings, and provides an improved combination of strength and damage tolerance.
Abstract:
The invention provides a 2000 series aluminum alloy having enhanced damage tolerance, the alloy consisting essentially of about 3.0-4.0 wt% copper; about 0.4-1.1 wt% magnesium; up to about 0.8 wt% silver; up to about 1.0 wt% Zn; up to about 0.25 wt% Zr; up to about 0.9 wt% Mn; up to about 0.5 wt% Fe; and up to about 0.5 wt% Si, the balance substantially aluminum, incidental impurities and elements, said copper and magnesium present in a ratio of about 3.6-5 parts copper to about 1 part magnesium. The alloy is suitable for use in wrought or cast products including those used in aerospace applications, particularly sheet or plate structural members, extrusions and forgings, and provides an improved combination of strength and damage tolerance.
Abstract:
There is claimed an aerospace alloy having improved corrosion resistance performance, particularly intergranular corrosion resistance. The alloy consisting essentially of: about 0.6-1.15 wt. % silicon, about 0.6-1.0 wt. % copper, about 0.8-1.2 wt. % magnesium, about 0.55-0.86 wt. % zinc, less than about 0.1 wt. % manganese, about 0.2-0.3 wt. % chromium, the balance aluminum, incidental elements and impurities. While it is preferably made into sheet or plate product forms, it can also be extruded. Products made from this alloy exhibit at least about 5 % greater yield strength and about 45 % or greater resistance to intergranular corrosion attack than their 6013-T6 counterparts, as measured by average depth of corrosion after 24 hours exposure to an aqueous NaCl-H>2 2