Abstract:
A phacoemulsification sleeve having a centering ring isolated within an outer shell. A bellows-like sleeve between the handpiece and the outer shell provides a fluid path for the irrigating fluid.
Abstract:
A system and method for tuning and controlling ultrasonic handpieces by incorporating a broad-spectrum signal as at least a component of the signal used to drive the handpiece. The response of the handpiece to this broad-spectrum signal is measured and the frequency or amplitude or both of the drive signal are adjusted in order to maintain the desired level of handpiece performance. The operation of the systems and the performance of the methods described enable the handpiece to be operated in a most effective manner over a more widely varying range of mechanical load and thermal conditions than was possible through the use of prior control systems and methods.
Abstract:
A system and method for tuning and controlling ultrasonic handpieces by varying the frequency of the drive signal that is fed to the handpiece by a discrete dither increment. A digital signal processor may be used to measure the response of the handpiece to the varying drive signal and compare these responses to determine the probable value of the actual series resonance. The output of the digital signal processor is used to generate control parameters embodied within an appropriate control signal, which is fed to the source of the drive signal in order to alter aspects of the drive signal.
Abstract:
A system and method for tuning and controlling ultrasonic handpieces by incorporating a broad-spectrum signal as at least a component of the signal used to drive the handpiece. The response of the handpiece to this broad-spectrum signal is measured and the frequency or amplitude or both of the drive signal are adjusted in order to maintain the desired level of handpiece performance. The operation of the systems and the performance of the methods described enable the handpiece to be operated in a most effective manner over a more widely varying range of mechanical load and thermal conditions than was possible through the use of prior control systems and methods.
Abstract:
A system and method for tuning and controlling ultrasonic handpieces by varying the frequency of the drive signal that is fed to the handpiece by a discrete dither increment. A digital signal processor may be used to measure the response of the handpiece to the varying drive signal and compare these responses to determine the probable value of the actual series resonance. The output of the digital signal processor is used to generate control parameters embodied within an appropriate control signal, which is fed to the source of the drive signal in order to alter aspects of the drive signal.
Abstract:
A system and method for tuning and controlling ultrasonic handpieces by incorporating a broad-spectrum signal as at least a component of the signal used to drive the handpiece. The response of the handpiece to this broad-spectrum signal is measured and the frequency or amplitude or both of the drive signal are adjusted in order to maintain the desired level of handpiece performance. The operation of the systems and the performance of the methods described enable the handpiece to be operated in a most effective manner over a more widely varying range of mechanical load and thermal conditions than was possible through the use of prior control systems and methods.