Abstract:
Provided herein are crosslinked polymers useful in orthodontic appliances and light polymerizable liquid compositions and formulations useful for making crosslinked polymers. Also provided are methods of making an orthodontic appliance comprising a cross-linked polymer formed by a direct fabrication technique.
Abstract:
The present application relates to components, such as dental apparatuses, having geometrical features to facilitate post-fabrication cleaning, including methods of fabricating the same. In one embodiment, a dental apparatus, such as a retainer, an aligner, or a dental attachment placement appliance, comprises one or more concave surfaces for which one or more apertures is formed therethrough at or near a maximum depth of a given concave surface.
Abstract:
Systems, methods, and devices for producing orthodontic appliances are provided. The orthodontic appliance comprises an outer shell comprising a plurality of cavities shaped to receive the patient's teeth and generate one or more of a force or a torque in response to the appliance being worn on the patient's teeth. The orthodontic appliance can comprise an inner structure having a stiffness different than a stiffness of the outer shell. The inner structure can be positioned on an inner surface of the outer shell in order to distribute the one or more of a force or a torque to at least one tooth received within the plurality of cavities.
Abstract:
A non-transitory computing device readable medium storing instructions executable by a processor to cause a computing device to create a treatment plan based on a virtual model of a jaw of a patient, wherein the treatment plan includes use of a dental appliance comprising a shell having a first surface that defines a plurality of cavities shaped to receive a plurality of teeth of the patient; modify the virtual model of the shell in a first configuration to include a virtual binding structure on a second surface opposite the first surface of the dental appliance wherein the binding structure is shaped to receive a specialized feature that provide one or more force characteristics to the jaw, select a particular specialized feature as an attachment to the dental appliance; and adjust the virtual model of the jaw from a first configuration to a second configuration, according to the treatment plan, based at least in part on a modeled force provided by the combination of the virtual binding structure and the particular specialized feature.
Abstract:
Embodiments are provided for a patterned dental positioning appliance. One method embodiment includes receiving a dental mold of a patient's dentition, applying a pattern to a portion of the dental mold, and applying a material to the dental mold to form the removable dental positioning appliance that includes either the pattern on the portion of the dental mold or an inverse thereof.
Abstract:
Provided herein are photopolymerizable monomers, optionally for use as reactive diluents in a high temperature lithography-based photopolymerization process, a method of producing polymers using said photopolymerizable monomers, the polymers thus produced, and orthodontic appliances comprising the polymers.
Abstract:
Provided herein are curable compositions for use in a high temperature lithography-based photopolymerization process, a method of producing crosslinked polymers using said curable compositions, crosslinked polymers thus produced, and orthodontic appliances comprising the crosslinked polymers.
Abstract:
A segmented orthodontic aligner includes at least a first segment and a second segment. Each segment is shaped to fit over a set of teeth of a patient. The segmented aligner further includes a connector that joins the first segment to the second segment. The connector isolates the transmission of force between the first segment and the second segment.
Abstract:
A dental appliance is described herein. In one embodiment, the dental appliance comprises a concave trough conforming to a plurality of teeth when placed over the plurality of teeth. The concave trough is configured to transition from a first shape to a second shape if a deforming force is applied. The concave trough comprises a shape memory material. The shape memory material is configured to restore the concave trough to an approximate first shape upon an application of an external stimulus. The first shape is configured to apply a first force on a tooth when the trough conforms.
Abstract:
This disclosure provides low-viscosity resins for producing polymers with properties suitable for use in various mechanical appliances, such as orthodontic appliances (e.g., aligners). The low-viscosity resins may be photo-curable and can be used with direct fabrication methods and equipment. In various embodiments, the polymeric materials produced from the low-viscosity resins described herein have high toughness while remaining resistant to stress relaxation. Low-viscosity, photo-curable resins described herein have reduced hydrogen bonding in comparison to traditional materials (e.g., materials having high urethane content) used in orthodontic appliances.