Abstract:
Methods, computer-readable media, systems, and/or apparatuses for providing offer and insight generation functions are provided. For instance, user input may be received requesting generation of an offer. In response to receiving the request, an application may be transmitted to a device, such as a mobile device of a user. In some examples, the application may be executed by the device and may facilitate establishing a communication session with a third party system, identifying and extracting data from the third party system, and transmitting the extracted data to an entity for evaluation. In some examples, evaluation by the entity may include generating one or more insights, outputs and the like. In some arrangements, the evaluation may be performed using machine learning and, in some examples, may be performed in real-time or near real-time.
Abstract:
Systems and methods are disclosed for generating a display of a navigation map. The system may comprise a historical data source device having, for example, a historical data source computer and a database storing historical data associated with one or more of vehicle accident data, traffic data, vehicle volume data, vehicle density data, road characteristic data, or weather data. The system may comprise a map data processing device having a map data processing computer and memory storing computer-executable instructions that, when executed by the map data processing computer, cause the map data processing device to, for example, determine, based on a location determining device, a location of a vehicle. The map data processing system may determine one or more historical factors based on the location of the vehicle. The map data processing system may receive, from the historical data source device and for the location, historical data associated with the one or more historical factors. Based on the location of the vehicle, one or more real time factors and real time data associated with the one or more real time factors may be calculated. The map data processing system may calculate, using the one or more historical factors and the one or more real time factors, a navigation score for each segment of a route from the location to a destination location. The map data processing system may determine one or more colors for each navigation score and/or generate a display of a navigation map comprising the one or more colors.
Abstract:
Systems, methods, computer-readable media, and apparatuses for identifying and executing one or more interactive condition evaluation tests to generate an output are provided. In some examples, user information may be received by a system and one or more interactive condition evaluation tests may be identified. An instruction may be transmitted to a computing device of a user and executed on the computing device to enable functionality of one or more sensors that may be used in the identified tests. A user interface may be generated including instructions for executing the identified tests. Upon initiating a test, data may be collected from one or more sensors in the computing device. The data collected may be transmitted to the system and may be processed using one or more machine learning datasets to generate an output.
Abstract:
Methods, computer-readable media, software, and apparatuses may monitor consumer information in order to determine a probability of a data breach associated with a customer based on an online presence of the customer. The probability of a data breach may be used to present metrics to a consumer and/or a service provider. Further, the consumer may be presented with information indicating what factors contribute to the probability of a data breach, as well as information regarding how to reduce those factors.
Abstract:
Methods, computer-readable media, software, and apparatuses include activating a telematics system to collect telematics data associated with operation of a vehicle during a first window of time, receiving, by a computing device associated with the vehicle, telematics data from the telematics system during the first window of time, identifying one or more parameters associated with operation of the vehicle based on analyzing the telematics data, determining whether the one or more parameters meets a safe driving threshold, and upon determining that the one or more parameters meets the safe driving threshold, transmitting the telematics data to a third party server or device.
Abstract:
Systems including one or more sensors, coupled to a vehicle, may detect sensor information and provide the sensor information to another computing device for processing. A system includes one or more sensors, coupled to a vehicle and configured to detect sensor information, and a computing device configured to communicate with one or more mobile sensors to receive the mobile sensor information, communicate with the one or more sensors to receive the sensor information, and analyze the sensor information and the mobile sensor information to identify one or more risk factors.
Abstract:
Methods, computer-readable media, systems, and/or apparatuses for evaluating movement data to identify a user as a driver or non-driver passenger are provided. In some examples, movement data may be received from a mobile device of a user. The movement data may include sensor data including location data, such as global positioning system (GPS) data, accelerometer and/or gyroscope data, and the like. Additional data may be retrieved from one or more other sources. For instance, additional data such as usage of applications on the mobile device, public transportation schedules and routes, image data, vehicle operation data, and the like, may be received and analyzed with the movement data to determine whether the user of the mobile device was a driver or non-driver passenger of the vehicle. Based on the determination, the data may be deleted in some examples or may be further processed to generate one or more outputs.
Abstract:
A system including a processor and memory may provide for automatically activating or deactivating a feature of a fleet vehicle. For example, one or more fleet vehicles may include one or more of a global-positioning system, a speed governor, electronically-controlled brakes, an electronically-controlled accelerator, a speed limiter, or an on-board computer with a processor and memory. One or more features may be activated by a local or remote computing device or system. For example, a system may determine one or more recommended routes between two or more locations. The system may track a fleet vehicle's progress along a route, and activate a feature of the fleet vehicle based on the fleet vehicle following or not following the recommended route. For example, the system may cause activation of a speed limiter on the fleet vehicle, disable the fleet vehicle, and/or activate or deactivate autonomous features of the fleet vehicle.
Abstract:
Aspects of the present disclosure provide systems and methods for vehicle sharing. One aspect includes a vehicle sharing system including a data collection component configured to receive vehicle owner information and user information. The vehicle sharing system may also include a matching component configured to determine a match between a vehicle owner and a vehicle user based on the vehicle owner information and the user information. In some aspects, the vehicle owner information includes vehicle owner social data and the user information includes vehicle user social data. The vehicle sharing system may also include a communication interface configured to send an indication of the match between the vehicle owner and the vehicle user.