Abstract:
A multichannel imaging system generates an ensemble of images for each field of view of an object (401). Each image in the ensemble is intended to contain information from only one source among a plurality of sources for the object. However, due to crosstalk, at least a portion of the signal from a first source appears in a channel intended for a second source (404). Because the accuracy of the correction will be degraded if the images in an ensemble are spatially misaligned with respect to one another, the spatial offset between images is determined (408) and a correction is applied to substantially eliminate the offset. Then, a correction to the signals is determined to substantially reduce the contributions to the signal in a channel from the signals in other channels. The signal processing can be employed to process the output signals for each of a plurality of different disclosed imaging systems (409).
Abstract:
In automated computation-based interpretation of images, the accuracy and reliability of the detection and delineation of objects, known as "object segmentation," is implemented so as to provide efficient performance. In a multi step process, objects are first detected and captured into regions of interest (ROIs). Sets of pixels belonging to respective objects are then identified. Preferably object detection is achieved using both a two-dimensional (2D) low pass filter and a 2D edge enhancement filter. Two different gradient based edge enhancement filters are disclosed. One embodiment of the invention defines a (ROI) by first determining the center of objects by executing a plurality of decimations on the filtered image data, and then establishing object boundaries. In a second embodiment the ROI is defined by generating an amplitude histogram of the filtered image data, and for histograms exceeding a threshold determining by pixel which rows are to be included in the ROI.
Abstract:
A multichannel imaging system generates an ensemble of images for each field of view of an object (401). Each image in the ensemble is intended to contain information from only one source among a plurality of sources for the object. However, due to crosstalk, at least a portion of the signal from a first source appears in a channel intended for a second source (404). Because the accuracy of the correction will be degraded if the images in an ensemble are spatially misaligned with respect to one another, the spatial offset between images is determined (408) and a correction is applied to substantially eliminate the offset. Then, a correction to the signals is determined to substantially reduce the contributions to the signal in a channel from the signals in other channels. The signal processing can be employed to process the output signals for each of a plurality of different disclosed imaging systems (409).
Abstract:
A multichannel imaging system generates an ensemble of images for each field of view of an object (401). Each image in the ensemble is intended to contain information from only one source among a plurality of sources for the object. However, due to crosstalk, at least a portion of the signal from a first source appears in a channel intended for a second source (404). Because the accuracy of the correction will be degraded if the images in an ensemble are spatially misaligned with respect to one another, the spatial offset between images is determined (408) and a correction is applied to substantially eliminate the offset. Then, a correction to the signals is determined to substantially reduce the contributions to the signal in a channel from the signals in other channels. The signal processing can be employed to process the output signals for each of a plurality of different disclosed imaging systems (409).
Abstract:
In automated computation-based interpretation of images, the accuracy and reliability of the detection and delineation of objects, known as "object segmentation," is implemented so as to provide efficient performance. In a multi-step process, objects are first detected and captured into regions of interest (ROIs). Sets of pixels belonging to respective objects are then identified. Preferably object detection is achieved using both a two-dimensional (2D) low pass filter and a 2D edge enhancement filter. Two different gradient based edge enhancement filters are disclosed. One embodiment of the invention defines a (ROI) by first determining the center of objects by executing a plurality of decimations on the filtered image data, and then establishing object boundaries. In a second embodiment the ROI is defined by generating an amplitude histogram of the filtered image data, and for histograms exceeding a threshold determining by pixel which rows are to be included in the ROI.
Abstract:
A multi-channel imaging system generates an ensemble of images for each field of view of an object. Each image in the ensemble is intended to contain information from only one source among a plurality of sources for the object. However, due to crosstalk, at least a portion of the signal from a first source appears in a channel intended for a second source. Because the accuracy of the correction will be degraded if the images in an ensemble are spatially misaligned with respect to one another, the spatial offset between images is determined and a correction is applied to substantially eliminate the offset. Then, a correction to the signals is determined to substantially reduce the contributions to the signal in a channel from the signals in other channels. The signal processing can be employed to process the output signals for each of a plurality of different disclosed imaging systems.
Abstract:
A multichannel imaging system generates an ensemble of images for each field of view of an object (401). Each image in the ensemble is intended to contai n information from only one source among a plurality of sources for the object . However, due to crosstalk, at least a portion of the signal from a first source appears in a channel intended for a second source (404). Because the accuracy of the correction will be degraded if the images in an ensemble are spatially misaligned with respect to one another, the spatial offset between images is determined (408) and a correction is applied to substantially eliminate the offset. Then, a correction to the signals is determined to substantially reduce the contributions to the signal in a channel from the signals in other channels. The signal processing can be employed to process the output signals for each of a plurality of different disclosed imaging systems (409).